skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Chaoran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Black hole feedback plays a central role in shaping the circumgalactic medium (CGM) of elliptical galaxies. We systematically study the impact of plasma physics on the evolution of ellipticals by performing three-dimensional non-ideal magnetohydrodynamic simulations of the interactions of active galactic nucleus (AGN) jets with the CGM including magnetic fields, and cosmic rays (CRs) and their transport processes. We find that the physics of feedback operating on large galactic scales depends very sensitively on plasma physics operating on small scales. Specifically, we demonstrate that (i) in the purely hydrodynamical case, the AGN jets initially maintain the atmospheres in global thermal balance. However, local thermal instability generically leads to the formation of massive cold discs in the vicinity of the central black hole in disagreement with observations; (ii) including weak magnetic fields prevents the formation of the discs because local B-field amplification in the precipitating cold gas leads to strong magnetic breaking, which quickly extracts angular momentum from the accreting clouds. The magnetic fields transform the cold clouds into narrow filaments that do not fall ballistically; (iii) when plasma composition in the AGN jets is dominated by CRs, and CR transport is neglected, the atmospheres exhibit cooling catastrophes due to inefficient heat transfer from the AGN to CGM despite Coulomb/hadronic CR losses being present; (iv) including CR streaming and heating restores agreement with the observations, i.e. cooling catastrophes are prevented and massive cold central discs do not form. The AGN power is reduced as its energy is utilized efficiently. 
    more » « less
  2. Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,α= 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα= 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating. 
    more » « less