skip to main content


Search for: All records

Creators/Authors contains: "Wang, Chengliang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Out of the several hundred copies ofrRNAgenes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactiverRNAgenes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.

     
    more » « less
    Free, publicly-accessible full text available January 19, 2025
  2. As Autonomous Vehicles (AVs) become possible for E-hailing services operate, especially when telecom companies start deploying next-generation wireless networks (known as 5G), many new technologies may be applied in these vehicles. Dynamic-route-switching is one of these technologies, which could help vehicles find the best possible route based on real-time traffic information. However, allowing all AVs to choose their own optimal routes is not the best solution for a complex city network, since each vehicle ignores its negative effect on the road system due to the additional congestion it creates. As a result, with this system, some of the links may become over-congested, causing the whole road network system performance to degrade. Meanwhile, the travel time reliability, especially during the peak hours, is an essential factor to improve the customers' ride experience. Unfortunately, these two issues have received relatively less attention. In this paper, we design a link-based dynamic pricing model to improve the road network system and travel time reliability at the same time. In this approach, we assume that all links are eligible with the dynamic pricing, and AVs will be perfect informed with update traffic condition and follow the dynamic road pricing. A heuristic approach is developed to address this computationally difficult problem. The output includes link-based surcharge, new travel demand and traffic condition which would improve the system performance close to the System Optimal (SO) solution and maintain the travel time reliability. Finally, we evaluate the effectiveness and efficiency of the proposed model to the well-known test Sioux Falls network. 
    more » « less