Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Introduction:We hypothesized extracellular vesicles (EVs) from preconditioned human-induced pluripotent stem cell–derived mesenchymal stem cells (iMSCs) attenuate LPS-induced acute lung injury (ALI) and endotoxemia.Methods:iMSCs were incubated with cell stimulation cocktail (CSC) and EVs were isolated. iMSC-EVs were characterized by size and EV markers. Biodistribution of intratracheal (IT), intravenous, and intraperitoneal injection of iMSC-EVs in mice was examined using IVIS. Uptake of iMSC-EVs in lung tissue, alveolar macrophages, and RAW264.7 cells was also assessed. C57BL/6 mice were treated with IT/IP iMSC-EVs or vehicle ± IT/IP LPS to induce ALI/acute respiratory distress syndrome and endotoxemia. Lung tissues, plasma, and bronchoalveolar lavage fluid (BALF) were harvested at 24 h. Lung histology, BALF neutrophil/macrophage, cytokine levels, and total protein concentration were measured to assess ALI and inflammation. Survival studies were performed using IP LPS in mice for 3 days.Results:iMSC-EV route of administration resulted in differential tissue distribution. iMSC-EVs were taken up by alveolar macrophages in mouse lung and cultured RAW264.7 cells. IT LPS-treated mice demonstrated marked histologic ALI, increased BALF neutrophils/macrophages and protein, and increased BALF and plasma TNF-α/IL-6 levels. These parameters were attenuated by 2 h before or 2 h after treatment with IT iMSC-EVs in ALI mice. Interestingly, the IT LPS-induced increase in IL-10 was augmented by iMSC-EVs. Mice treated with IP LPS showed increases in TNF-α and IL-6 that were downregulated by iMSC-EVs and LPS-induced mortality was ameliorated by iMSC-EVs. Administration of IT iMSC-EVs 2 h after LPS downregulated the increase in proinflammatory cytokines (TNF-α/IL-6) by LPS and further increased IL-10 levels.Conclusions:iMSC-EVs attenuate the inflammatory effects of LPS on cytokine levels in ALI and IP LPS in mice. LPS-induced mortality was improved with administration of iMSC-EVs.more » « less
-
Mycobacteria, including the human pathogen Mycobacterium tuberculosis , grow by inserting new cell wall material at their poles. This process and that of division are asymmetric, producing a phenotypically heterogeneous population of cells that respond non-uniformly to stress (Aldridge et al., 2012; Rego et al., 2017). Surprisingly, deletion of a single gene – lamA – leads to more symmetry, and to a population of cells that is more uniformly killed by antibiotics (Rego et al., 2017). How does LamA create asymmetry? Here, using a combination of quantitative time-lapse imaging, bacterial genetics, and lipid profiling, we find that LamA recruits essential proteins involved in cell wall synthesis to one side of the cell – the old pole. One of these proteins, MSMEG_0317, here renamed PgfA, was of unknown function. We show that PgfA is a periplasmic protein that interacts with MmpL3, an essential transporter that flips mycolic acids in the form of trehalose monomycolate (TMM), across the plasma membrane. PgfA interacts with a TMM analog suggesting a direct role in TMM transport. Yet our data point to a broader function as well, as cells with altered PgfA levels have differences in the abundance of other lipids and are differentially reliant on those lipids for survival. Overexpression of PgfA, but not MmpL3, restores growth at the old poles in cells missing lamA . Together, our results suggest that PgfA is a key determinant of polar growth and cell envelope composition in mycobacteria, and that the LamA-mediated recruitment of this protein to one side of the cell is a required step in the establishment of cellular asymmetry.more » « less
An official website of the United States government
