Dynamic control over the polarization state of light is foundational for many scientific and technological applications, yet it remains a challenge to dynamically tailor responses with arbitrary polarization bases over a broad bandwidth. Broadband metasurface systems that utilize microscale displacements between two metasurfaces to enable reconfigurable polarization responses within a predefined polarization basis are reported. The metasurface pairs form an interferometer, and the lateral displacements produce detour phase shifts within the interferometer beam paths that mediate polarization state tuning. It is shown how the metasurface systems can be designed using freeform topology optimization to enable tailorable elliptical birefringence responses over a large bandwidth and how cascaded metasurface systems can enable the mapping of input and output polarization states between any two points on the Poincare sphere. It is anticipated that these concepts will have utility in imaging, display, communications, and metrology applications in classical and quantum optical domains.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Immersion into a virtual environment (VE) goften results in adverse symptoms including nausea, dizziness, and disorientation. These symptoms are an indicator of cybersickness,which is a condition similar to motion sickness experienced in VEs. In this paper, we hypothesized that administered cognitive distraction can accelerate the rate of habituation to a VE. This acceleration, therefore, can lower severity of cybersickness in fewer amount of immersions. To evaluate the impact of cognitive distraction on reducing the effects of cybersickness, we designed a VE and carried out a human subject study with control and experimental groups created through stratified random sampling.Subjects were immersed in our VE on four separate sessions, and our experimental group received cognitive distraction throughout the immersions. Cybersickness was measured using the Simulator Sickness Questionnaire (SSQ) and Presence Questionnaire (PQ). Upon comparing the average SSQ subgroups nausea, oculomotor, and disorientation scores reported by participants for each immersion session, we observed that our experimental group exhibited decrease in cybersickness to a greater extent than that of our control group. We completed t-tests for each of these comparisons, to find that these results are statistically insignificant. We plan to continue with this work by incorporating up to 30 total participants to clarify these findings.more » « less
-
Abstract Metasurfaces are ultrathin optical elements that are highly promising for constructing lightweight and compact optical systems. For their practical implementation, it is imperative to maximize the metasurface efficiency. Topology optimization provides a pathway for pushing the limits of metasurface efficiency; however, topology optimization methods have been limited to the design of microscale devices due to the extensive computational resources that are required. We introduce a new strategy for optimizing large-area metasurfaces in a computationally efficient manner. By stitching together individually optimized sections of the metasurface, we can reduce the computational complexity of the optimization from high-polynomial to linear. As a proof of concept, we design and experimentally demonstrate large-area, high-numerical-aperture silicon metasurface lenses with focusing efficiencies exceeding 90%. These concepts can be generalized to the design of multifunctional, broadband diffractive optical devices and will enable the implementation of large-area, high-performance metasurfaces in practical optical systems.