skip to main content

Search for: All records

Creators/Authors contains: "Wang, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently 3D scene understanding attracts attention for many applications, however, annotating a vast amount of 3D data for training is usually expensive and time consuming. To alleviate the needs of ground truth, we propose a self-supervised schema to learn 4D spatio-temporal features (i.e. 3 spatial dimensions plus 1 temporal dimension) from dynamic point cloud data by predicting the temporal order of sampled and shuffled point cloud clips. 3D sequential point cloud contains precious geometric and depth information to better recognize activities in 3D space compared to videos. To learn the 4D spatio-temporal features, we introduce 4D convolution neural networks tomore »predict the temporal order on a self-created large scale dataset, NTU- PCLs, derived from the NTU-RGB+D dataset. The efficacy of the learned 4D spatio-temporal features is verified on two tasks: 1) Self-supervised 3D nearest neighbor retrieval; and 2) Self-supervised representation learning transferred for action recognition on smaller 3D dataset. Our extensive experiments prove the effectiveness of the proposed self-supervised learning method which achieves comparable results w.r.t. the fully-supervised methods on action recognition on MSRAction3D dataset.« less
    Free, publicly-accessible full text available June 19, 2022
  2. Scene flow depicts the dynamics of a 3D scene, which is critical for various applications such as autonomous driving, robot navigation, AR/VR, etc. Conventionally, scene ?ow is estimated from dense/regular RGB video frames. With the development of depth-sensing technologies, precise 3D measurements are available via point clouds which have sparked new research in 3D scene flow. Nevertheless, it remains challenging to extract scene flow from point clouds due to the sparsity and irregularity in typical point cloud sampling patterns. One major issue related to irregular sampling is identified as the randomness during point set abstraction/feature extraction an elementary process inmore »many flow estimation scenarios. A novel Spatial Abstraction with Attention (SA2) layer is accordingly proposed to alleviate the unstable abstraction problem. Moreover, a Temporal Abstraction with Attention (TA2) layer is proposed to rectify attention in temporal domain, leading to benefits with motions scaled in a larger range. Extensive analysis and experiments verified the motivation and significant performance gains of our method, dubbed as Flow Estimation via Spatial-Temporal Attention (FESTA), when compared to several state-of-the-art benchmarks of scene flow estimation.« less
    Free, publicly-accessible full text available June 19, 2022
  3. Free, publicly-accessible full text available July 1, 2022
  4. Distributed model training suffers from communication bottlenecks due to frequent model updates transmitted across compute nodes. To alleviate these bottlenecks, practitioners use gradient compression techniques like sparsification, quantization, or low-rank updates. The techniques usually require choosing a static compression ratio, often requiring users to balance the trade-off between model accuracy and per-iteration speedup. In this work, we show that such performance degradation due to choosing a high compression ratio is not fundamental. An adaptive compression strategy can reduce communication while maintaining final test accuracy. Inspired by recent findings on critical learning regimes, in which small gradient errors can have irrecoverablemore »impact on model performance, we propose Accordion a simple yet effective adaptive compression algorithm. While Accordion maintains a high enough compression rate on average, it avoids over-compressing gradients whenever in critical learning regimes, detected by a simple gradient-norm based criterion. Our extensive experimental study over a number of machine learning tasks in distributed environments indicates that Accordion, maintains similar model accuracy to uncompressed training, yet achieves up to 5.5x better compression and up to 4.1x end-to-end speedup over static approaches. We show that Accordion also works for adjusting the batch size, another popular strategy for alleviating communication bottlenecks.« less
    Free, publicly-accessible full text available April 5, 2022
  5. Free, publicly-accessible full text available May 1, 2022
  6. 3D point cloud completion has been a long-standing challenge at scale, and corresponding per-point supervised training strategies suffered from cumbersome annotations. 2D supervision has recently emerged as a promising alternative for 3D tasks, but specific approaches for 3D point cloud completion still remain to be explored. To overcome these limitations, we propose an end-to-end method that directly lifts a single depth map to a completed point cloud. With one depth map as input, a multi-way novel depth view synthesis network (NDVNet) is designed to infer coarsely completed depth maps under various viewpoints. Meanwhile, a geometric depth perspective rendering module ismore »introduced to utilize the raw input depth map to generate a reprojected depth map for each view. Therefore, the two parallelly generated depth maps for each view are further concatenated and refined by a depth completion network (DCNet). The final completed point cloud is fused from all refined depth views. Experimental results demonstrate the effectiveness of our proposed approach composed of aforementioned components, to produce high-quality, state-of-the-art results on the popular SUNCG benchmark.« less
  7. Antiferromagnets are interesting materials for spintronics because of their faster dynamics and robustness against perturbations from magnetic fields. Control of the antiferromagnetic order constitutes an important step towards applications, but has been limited to bulk materials so far. Here, using spatially resolved second-harmonic generation, we show direct evidence of long-range antiferromagnetic order and Ising-type Néel vector switching in monolayer MnPSe3 with large XY anisotropy. In additional to thermally induced switching, uniaxial strain can rotate the Néel vector, aligning it to a general in-plane direction irrespective of the crystal axes. A change of the universality class of the phase transition inmore »the XY model under uniaxial strain causes this emergence of strain-controlled Ising order in the XY magnet MnPSe3. Our discovery is a further ingredient for compact antiferromagnetic spintronic devices in the two-dimensional limit.« less
    Free, publicly-accessible full text available April 19, 2022
  8. We propose a semi-supervised learning approach for video classification, VideoSSL, using convolutional neural networks (CNN). Like other computer vision tasks, existing supervised video classification methods demand a large amount of labeled data to attain good performance. However, annotation of a large dataset is expensive and time consuming. To minimize the dependence on a large annotated dataset, our proposed semi-supervised method trains from a small number of labeled examples and exploits two regulatory signals from unlabeled data. The first signal is the pseudo-labels of unlabeled examples computed from the confidences of the CNN being trained. The other is the normalized probabilities,more »as predicted by an image classifier CNN, that captures the information about appearances of the interesting objects in the video. We show that, under the supervision of these guiding signals from unlabeled examples, a video classification CNN can achieve impressive performances utilizing a small fraction of annotated examples on three publicly available datasets: UCF101, HMDB51, and Kinetics.« less
  9. Free, publicly-accessible full text available February 1, 2022