Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract To address the global water shortage crisis, one of the promising solutions is to collect freshwater from the environmental resources such as fog. However, the efficiency of conventional fog collectors remains low due to the viscous drag of fog-laden wind deflected around the collecting surface. Here, we show that the three-dimensional and centimetric
kirigami structures can control the wind flow, forming quasi-stable counter-rotating vortices. The vortices regulate the trajectories of incoming fog clusters and eject extensive droplets to the substrate. As the characteristic structural length is increased to the size of vortices, we greatly reduce the dependence of fog collection on the structural delicacy. Together with gravity-directed gathering by the folds, thekirigami fog collector yields a collection efficiency of 16.1% at a low wind speed of 0.8 m/s and is robust against surface characteristics. The collection efficiency is maintained even on a 1 m2collector in an outdoor setting. -
Soft robots, with their agile locomotion and responsiveness to environment, have attracted great interest in recent years. Liquid crystal elastomers (LCEs), known for their reversible and anisotropic deformation, are promising candidates as embedded intelligent actuators in soft robots. So far, most studies on LCEs have focused on achieving complex deformation in thin films over centimeter‐scale areas with relatively small specific energy densities. Herein, using an extrusion process, meter‐long LCE composite filaments that are responsive to both infrared light and electrical fields are fabricated. In the composite filaments, a small quantity of cellulose nanocrystals (CNCs) is incorporated to facilitate the alignment of liquid crystal molecules along the long axis of the filament. Up to 2 wt% carbon nanotubes (CNTs) is introduced into a LCE matrix without aggregation, which in turn greatly improves the mechanical property of filaments and their actuation speed, where the Young's modulus along the long axis reaches 40 MPa, the electrothermal response time is within 10 s. The maximum work capacity is 38 J kg−1with 2 wt% CNT loading. Finally, shape transformation and locomotion in several soft robotics systems achieved by the dual‐responsive LCE/CNT composite filament actuators are demonstrated.