Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2025
-
Many researchers have studied the roles of building envelope materials on UHI, such as roofs, and walls, but few of them have explored the impacts of the emergence of the solar-reflective coatings, films, and panels but well-visible transmittance that is increasingly applied to glazed building facades, especially in hot climates, for outdoor thermal environments. The question then arises: Despite the positive effects of these strong solar-reflective facades on building heating and cooling energy savings, do they have the same positive effects on the adjacent outdoor area, especially in a dense urban context? This research aims to quantify the potential UHI effects of the solar-reflective facades relative to the non-reflective ones in a dense urban context, along with the heating and cooling energy performance analysis. As such, a simulation method in terms of a series of tools including LBNL Radiance, EnergyPlus, and WINDOW software was adopted in this work to analyze the solar radiation interactions between the façade surface and the surrounding urban structures and potential temperature rise under solar-reflective and non-reflective facades. The result shows that the annual cooling energy savings by using the solar-reflective facades are about 33.8% relative to the typical double-pane clear glazed façade because of the substantial reduction of U-factor and solar heat gains; But, this preliminary work also unveils the potential adverse effects of using such materials at the urban scale, leading nearly 2 times greater solar irradiation and UHI effects than the ones by the solar-non-reflective building surfaces in an urban area. Future optimization studies on the trade-off between the building cooling energy savings and UHI effects by the solar-reflective façades need to be conducted.more » « lessFree, publicly-accessible full text available October 1, 2024
-
Fallen logs acting as a seedbed for trees to aid the regeneration of vegetation is a common ecological strategy in modern forests. However, the origin, occurrence, and evolution of this nurse log strategy in the geological time is unclear. Here we report a ca. 310-millionyear-old permineralized cordaitalean tree trunk from the Moscovian (Pennsylvanian, upper Carboniferous) Benxi Formation in Yangquan City, Shanxi Province, North China, with evidence of probable cordaitalean rootlets growing inside the trunk. The specimen is interpreted as a nurse log for regeneration of cordaitaleans in coastal lowlands. It provides the first glimpse of plant-plant facilitative interaction between Pennsylvanian cordaitaleans in Cathaysia. We interpret that the Moscovian cordaitalean seedlings preferentially established on the fallen log owing to the ability of the rotting wood to store fresh water. The nurse log provided a stable substrate in an environment with episodic salinity and/or water table variations. In combination with previous records, it is suggested that a sophisticated terrestrial ecosystem with multiple interactions between plants and other organisms have developed on the central North China Craton no later than the Middle Pennsylvanian.more » « lessFree, publicly-accessible full text available August 31, 2024
-
Free, publicly-accessible full text available August 1, 2024
-
Free, publicly-accessible full text available August 9, 2024
-
Free, publicly-accessible full text available June 25, 2024
-
Free, publicly-accessible full text available April 1, 2024
-
This paper develops a tree-topological local mesh refinement (TLMR) method on Cartesian grids for the simulation of bio-inspired flow with multiple moving objects. The TLMR nests refinement mesh blocks of structured grids to the target regions and arrange the blocks in a tree topology. The method solves the time-dependent incompressible flow using a fractional-step method and discretizes the Navier-Stokes equation using a finite-difference formulation with an immersed boundary method to resolve the complex boundaries. When iteratively solving the discretized equations across the coarse and fine TLMR blocks, for better accuracy and faster convergence, the momentum equation is solved on all blocks simultaneously, while the Poisson equation is solved recursively from the coarsest block to the finest ones. When the refined blocks of the same block are connected, the parallel Schwarz method is used to iteratively solve both the momentum and Poisson equations. Convergence studies show that the algorithm is second-order accurate in space for both velocity and pressure, and the developed mesh refinement technique is benchmarked and demonstrated by several canonical flow problems. The TLMR enables a fast solution to an incompressible flow problem with complex boundaries or multiple moving objects. Various bio-inspired flows of multiple moving objects show that the solver can save over 80% computational time, proportional to the grid reduction when refinement is applied.more » « lessFree, publicly-accessible full text available April 1, 2024
-
The effects of solar radiation play an important role in human thermal comfort, especially within the near-window zones. In the incorporation of the solar effect into the thermal comfort model, the comprehensive solar-optical characteristics of windows have to be taken into account, especially when it came to a largely variant or unbalanced spectral distribution of a building window. In this work, we examined the thermal effects varying with different spectral characteristics of glazing systems and also preliminarily proposed a new indicator “thermal effect index (TEI)” that can be used to estimate the impact levels of window systems on indoor users’ thermal comfort in near-window zones. TEI could be used as a benchmark for assessing a window system’s potential impacts on indoor users’ thermal comfort, especially when direct sunlight is enabled in a space.more » « lessFree, publicly-accessible full text available January 1, 2024