skip to main content


Search for: All records

Creators/Authors contains: "Wang, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 12, 2025
  2. Free, publicly-accessible full text available April 1, 2025
  3. Free, publicly-accessible full text available January 30, 2025
  4. Free, publicly-accessible full text available November 1, 2024
  5. Free, publicly-accessible full text available December 1, 2024
  6. ABSTRACT

    We conduct a systematic search for periodic variables in the hot subdwarf catalogue using data from the Zwicky Transient Facility. We present the classification of 67 HW Vir binaries, 496 reflection effect, pulsation or rotation sinusoids, 11 eclipsing signals, and 4 ellipsoidally modulated binaries. Of these, 486 are new discoveries that have not been previously published including a new mass-transferring hot subdwarf binary candidate. These sources were determined by applying the Lomb–Scargle and box least squares periodograms along with manual inspection. We calculated variability statistics on all periodic sources, and compared our results to traditional methods of determining astrophysical variability. We find that ≈60 per cent of variable targets, mostly sinusoidal variability, would have been missed using a traditional varindex cut. Most HW Virs, eclipsing systems, and all ellipsoidal variables were recovered with a varindex >0.02. We also find a significant reddening effect, with some variable hot subdwarfs meshing with the main-sequence stripe in the Hertzsprung–Russell diagram. Examining the positions of the variable stars in Galactic coordinates, we discover a higher proportion of variable stars within |b| < 25° of the Galactic plane, suggesting that the Galactic plane may be fertile grounds for future discoveries if photometric surveys can effectively process the clustered field.

     
    more » « less