Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In the presence of a strong electric field perpendicular to the magnetic field, the electron cross-field (E × B) flow relative to the unmagnetized ions can cause the so-called electron cyclotron drift instability (ECDI) due to resonances of the ion acoustic mode and the electron cyclotron harmonics. This occurs in, for example, collisionless shock ramps in space, and in E × B discharge devices such as Hall thrusters. A prominent feature of ECDI is its capability to induce an electron flow parallel to the background E field at a speed greatly exceeding predictions by classical collision theory. Such anomalous transport is important due to its role in particle thermalization at space shocks, and in causing plasma flows towards the walls of E × B devices, leading to unfavorable erosion and performance degradation, etc. The development of ECDI and anomalous transport is often considered requiring a fully kinetic treatment. In this work, however, we demonstrate that a reduced variant of this instability, and more importantly, the associated anomalous transport, can be treated self-consistently in a collisionless two-fluid framework without any adjustable collision parameter. By treating both electron and ion species on an equal footing, the free energy due to themore »Free, publicly-accessible full text available September 30, 2023
-
Abstract All-solid-state sodium batteries (ASSSBs) are promising candidates for grid-scale energy storage. However, there are no commercialized ASSSBs yet, in part due to the lack of a low-cost, simple-to-fabricate solid electrolyte (SE) with electrochemical stability towards Na metal. In this work, we report a family of oxysulfide glass SEs (Na 3 PS 4− x O x , where 0 < x ≤ 0.60) that not only exhibit the highest critical current density among all Na-ion conducting sulfide-based SEs, but also enable high-performance ambient-temperature sodium-sulfur batteries. By forming bridging oxygen units, the Na 3 PS 4− x O x SEs undergo pressure-induced sintering at room temperature, resulting in a fully homogeneous glass structure with robust mechanical properties. Furthermore, the self-passivating solid electrolyte interphase at the Na|SE interface is critical for interface stabilization and reversible Na plating and stripping. The new structural and compositional design strategies presented here provide a new paradigm in the development of safe, low-cost, energy-dense, and long-lifetime ASSSBs.Free, publicly-accessible full text available December 1, 2023
-
An attacker can obtain a valid TLS certificate for a domain by hijacking communication between a certificate authority (CA) and a victim domain. Performing domain validation from multiple vantage points can defend against these attacks. We explore the design space of multi-vantage-point domain validation to achieve (1) security via sufficiently diverse vantage points, (2) performance by ensuring low latency and overhead in certificate issuance, (3) manageability by complying with CA/Browser forum requirements, and requiring minimal changes to CA operations, and (4) a low benign failure rate for legitimate requests. Our opensource implementation was deployed by the Let's Encrypt CA in February 2020, and has since secured the issuance of more than half a billion certificates during the first year of its deployment. Using real-world operational data from Let's Encrypt, we show that our approach has negligible latency and communication overhead, and a benign failure rate comparable to conventional designs with one vantage point. Finally, we evaluate the security improvements using a combination of ethically conducted real-world BGP hijacks, Internet-scale traceroute experiments, and a novel BGP simulation framework. We show that multi-vantage-point domain validation can thwart the vast majority of BGP attacks. Our work motivates the deployment of multi-vantage-point domain validationmore »
-
Abstract In this study, we simulate the magnitude of urban heat islands (UHIs) during heat wave (HWs) in two cities with contrasting climates (Boston, Massachusetts, and Phoenix, Arizona) using the Weather Research and Forecasting (WRF) Model and quantify their drivers with a newly developed attribution method. During the daytime, a surface UHI (SUHI) is found in Boston, which is mainly caused by the higher urban surface resistance that reduces the latent heat flux and the higher urban aerodynamic resistance r a that inhibits convective heat transfer between the urban surface and the lower atmosphere. In contrast, a daytime surface urban cool island is found in Phoenix, which is mainly due to the lower urban r a that facilitates convective heat transfer. In terms of near-surface air UHI (AUHI), there is almost no daytime AUHI in either city. At night, an SUHI and an AUHI are identified in Boston that are due to the stronger release of heat storage in urban areas. In comparison, the lower urban r a in Phoenix enhances convective heat transfer from the atmosphere to the urban surface at night, leading to a positive SUHI but no AUHI. Our study highlights that the magnitude of UHIs ormore »
-
Abstract Urban heat islands (UHIs) are caused by a multitude of changes induced by urbanization. However, the relative importance of biophysical and atmospheric factors in controlling the UHI intensity remains elusive. In this study, we quantify the magnitude of surface UHIs (SUHIs), or surface urban cool islands (SUCIs), and elucidate their biophysical and atmospheric drivers on the basis of observational data collected from one urban site and two rural grassland sites in and near the city of Nanjing, China. Results show that during the daytime a strong SUCI effect is observed when the short grassland site is used as the reference site whereas a moderate SUHI effect is observed when the tall grassland is used as the reference site. We find that the former is mostly caused by the lower aerodynamic resistance for convective heat transfer at the urban site and the latter is primarily caused by the higher surface resistance for evapotranspiration at the urban site. At night, SUHIs are observed when either the short or the tall grassland site is used as the reference site and are predominantly caused by the stronger release of heat storage at the urban site. In general, the magnitude of SUHI is muchmore »