skip to main content


Search for: All records

Creators/Authors contains: "Wang, Liang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 15, 2024
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. A major obstacle in cultivating a robust Heliophysics (and broader scientific) community is the lack of diversity throughout science, technology, engineering, and mathematics (STEM) fields. For many years, this has been understood as a “leaky pipeline” analogy, in which predominately minority students initially interested in STEM gradually fall (or are pushed) out of the field on their way to a scientific research position. However, this ignores critical structural and policy issues which drive even later career Ph.D.s out of a career in Heliophysics. We identify here several systemic problems that inhibit many from participating fully in the Heliophysics community, including soft money pressure, lack of accessibility and equity, power imbalances, lack of accountability, friction in collaboration, and difficulties in forming mentorship bonds. We present several recommendations to empower research-supporting organizations to help create a culture of inclusion, openness, and innovative science.

     
    more » « less
    Free, publicly-accessible full text available August 25, 2024
  5. Collisionless magnetic reconnection typically requires kinetic treatment that is, in general, computationally expensive compared to fluid-based models. In this study, we use the magnetohydrodynamics with an adaptively embedded particle-in-cell (MHD-AEPIC) model to study the interaction of two magnetic flux ropes. This innovative model embeds one or more adaptive PIC regions into a global MHD simulation domain such that the kinetic treatment is only applied in regions where the kinetic physics is prominent. We compare the simulation results among three cases: (1) MHD with adaptively embedded PIC regions, (2) MHD with statically (or fixed) embedded PIC regions, and (3) a full PIC simulation. The comparison yields good agreement when analyzing their reconnection rates and magnetic island separations as well as the ion pressure tensor elements and ion agyrotropy. In order to reach good agreement among the three cases, large adaptive PIC regions are needed within the MHD domain, which indicates that the magnetic island coalescence problem is highly kinetic in nature, where the coupling between the macro-scale MHD and micro-scale kinetic physics is important. 
    more » « less
  6. Abstract In the presence of a strong electric field perpendicular to the magnetic field, the electron cross-field (E × B) flow relative to the unmagnetized ions can cause the so-called electron cyclotron drift instability (ECDI) due to resonances of the ion acoustic mode and the electron cyclotron harmonics. This occurs in, for example, collisionless shock ramps in space, and in E × B discharge devices such as Hall thrusters. A prominent feature of ECDI is its capability to induce an electron flow parallel to the background E field at a speed greatly exceeding predictions by classical collision theory. Such anomalous transport is important due to its role in particle thermalization at space shocks, and in causing plasma flows towards the walls of E × B devices, leading to unfavorable erosion and performance degradation, etc. The development of ECDI and anomalous transport is often considered requiring a fully kinetic treatment. In this work, however, we demonstrate that a reduced variant of this instability, and more importantly, the associated anomalous transport, can be treated self-consistently in a collisionless two-fluid framework without any adjustable collision parameter. By treating both electron and ion species on an equal footing, the free energy due to the inter-species velocity shear allows the growth of an anomalous electron flow parallel to the background E field. We will first present linear analyses of the instability in the two-fluid five- and ten-moment models, and compare them against the fully-kinetic theory. At low temperatures, the two-fluid models predict the fastest-growing mode in good agreement with the kinetic result. Also, by including more ( > = 10 ) moments, secondary (and possibly higher) unstable branches can be recovered. The dependence of the instability on ion-to-electron mass ratio, plasma temperature, and background B field strength is also thoroughly explored. We then carry out direct numerical simulations of the cross-field setup using the five-moment model. The development of the instability, as well as the anomalous transport, is confirmed and in excellent agreement with theoretical predictions. The force balance properties are also studied using the five-moment simulation data. This work casts new insights into the nature of ECDI and the associated anomalous transport and demonstrates the potential of the two-fluid moment model in efficient modeling of E × B plasmas. 
    more » « less