skip to main content

Search for: All records

Creators/Authors contains: "Wang, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anderson, Douglas R ; Eloe, P ; Goodrich, C ; Peterson, A (Ed.)
    In this paper, a discrete Markov chain model is developed to describe the inventory at a bike share station. The uniqueness of solutions is first studied. Then the model calibration is considered by investigating a constrained optimization problem. Numerical simulations involving real data are conducted to demonstrate the model effectiveness as well.
  2. Abstract We use a recent census of the Milky Way (MW) satellite galaxy population to constrain the lifetime of particle dark matter (DM). We consider two-body decaying dark matter (DDM) in which a heavy DM particle decays with lifetime τ comparable to the age of the universe to a lighter DM particle (with mass splitting ϵ ) and to a dark radiation species. These decays impart a characteristic “kick velocity,” V kick = ϵ c , on the DM daughter particles, significantly depleting the DM content of low-mass subhalos and making them more susceptible to tidal disruption. We fit the suppression of the present-day DDM subhalo mass function (SHMF) as a function of τ and V kick using a suite of high-resolution zoom-in simulations of MW-mass halos, and we validate this model on new DDM simulations of systems specifically chosen to resemble the MW. We implement our DDM SHMF predictions in a forward model that incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk using an empirical model for the galaxy–halo connection. Bymore »comparing to the observed MW satellite population, we conservatively exclude DDM models with τ < 18 Gyr (29 Gyr) for V kick = 20 kms −1 (40 kms −1 ) at 95% confidence. These constraints are among the most stringent and robust small-scale structure limits on the DM particle lifetime and strongly disfavor DDM models that have been proposed to alleviate the Hubble and S 8 tensions.« less
    Free, publicly-accessible full text available June 1, 2023
  3. Free, publicly-accessible full text available June 1, 2023
  4. Abstract Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D 0 D 0 π + mass spectrum just below the D *+ D 0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + tetraquark with a quark content of $${{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}\overline{{{{{{\rm{u}}}}}}}\overline{{{{{{\rm{d}}}}}}}$$ c c u ¯ d ¯ and spin-parity quantum numbers J P  = 1 + . Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D *+ mesons is consistent with the observed D 0 π + mass distribution. To analyse the mass of the resonance and its coupling to the D * D system, a dedicated model is developed under the assumption of an isoscalar axial-vector $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + state decaying to the Dmore »* D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.« less
    Free, publicly-accessible full text available December 1, 2023
  5. We propose a general framework of using a multi-level log-Gaussian Cox process to model repeatedly observed point processes with complex structures; such type of data have become increasingly available in various areas including medical research, social sciences, economics, and finance due to technological advances. A novel nonparametric approach is developed to efficiently and consistently estimate the covariance functions of the latent Gaussian processes at all levels. To predict the functional principal component scores, we propose a consistent estimation procedure by maximizing the conditional likelihood of super-positions of point processes. We further extend our procedure to the bivariate point process case in which potential correlations between the processes can be assessed. Asymptotic properties of the proposed estimators are investigated, and the effectiveness of our procedures is illustrated through a simulation study and an application to a stock trading dataset.
  6. Free, publicly-accessible full text available May 1, 2023