- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Meiqi (2)
-
Cao, Andrew (1)
-
Cao, Wenda (1)
-
Ji, Kaifan (1)
-
Lee, Jeongwoo (1)
-
Qiu, Jiong (1)
-
Shen, Jinhua (1)
-
Wang, Haimin (1)
-
Wang, Jiasheng (1)
-
Yang, Xu (1)
-
Yu, Sijie (1)
-
Yurchyshyn, Vasyl (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We analyze high-resolution observations of an X-1.0 white-light flare, triggered by a filament eruption, on 2022 October 2. The full process of filament formation and subsequent eruption was captured in the Hαpassband by the Visible Imaging Spectrograph (VIS) on board the Goode Solar Telescope (GST) within its center field of view. White-light emissions appear in flare ribbons following the filament eruption and Hαribbon brightening. GST Broadband Filter Imager data show that the continuum intensity, as compared to the nearby quiet-Sun area, has increased by up to 20% in the photospheric TiO band around 7057 Å. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory reported 10% contrast enhancement in the continuum near Fei6173 Å line. The separation motion of two white-light kernels is recorded by the high-cadence GST/TiO images and is well accompanied by the motion of the VIS Hαflare ribbon leading edge. One kernel, located in a 150 Gauss field within a granulation area, exhibited an average apparent motion speed of 55 km s−1, which is the highest average speed ever reported. The other kernel drifted at 9 km s−1in an 800 Gauss magnetic field area. Hard X-ray (HXR) emissions reaching up to 300 keV have been observed for this flare. The simultaneous occurrence of high-cadence HXR, microwave, and white-light emissions strongly suggests that the energetic particles from the flare directly contribute to the heating. The inverted HXR energy flux density corresponding to 10% TiO brightening is 2.07 ± 0.23 × 1011erg cm−2s−1during the flare peak.more » « less
-
Lee, Jeongwoo; Wang, Haimin; Wang, Jiasheng; Wang, Meiqi (, The Astrophysical Journal)Abstract Spicules, the smallest observable jetlike dynamic features ubiquitous in the chromosphere, are supposedly an important potential source for small-scale solar wind transients, with supporting evidence yet needed. We studied the high-resolution Hαimages (0.″10) and magnetograms (0.″29) from the Big Bear Solar Observatory to find that spicules are an ideal candidate for the solar wind magnetic switchbacks detected by the Parker Solar Probe (PSP). It is not that spicules are a miniature of coronal jets, but that they have unique properties not found in other solar candidates in explaining solar origin of switchbacks. (1) The spicules under this study originate from filigrees, all in a single magnetic polarity. Since filigrees are known as footpoints of open fields, the spicule guiding field lines can form a unipolar funnel, which is needed to create an SB patch, a group of field lines that switch from one common base polarity to the other polarity. (2) The spicules come in a cluster lined up along a supergranulation boundary, and the simulated waiting times from their spatial intervals exhibit a number distribution continuously decreasing from a few seconds to ∼30 minutes, similar to that of switchbacks. (3) From a time–distance map for spicules, we estimate their occurrence rate as 0.55 spicules Mm−2s−1, which is sufficiently high for detection by PSP. In addition, the dissimilarity of spicules with coronal jets, including the absence of base brightening and low correlation with EUV emission, is briefly discussed.more » « less