skip to main content

Search for: All records

Creators/Authors contains: "Wang, Pai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We use a combination of experiments, numerical analysis and theory to investigate the nonlinear dynamic response of a chain of precompressed elastic beams. Our results show that this simple system offers a rich platform to study the propagation of large amplitude waves. Compression waves are strongly dispersive, whereas rarefaction pulses propagate in the form of solitons. Further, we find that the model describing our structure closely resembles those introduced to characterize the dynamics of several molecular chains and macromolecular crystals, suggesting that our macroscopic system can provide insights into the effect of nonlinear vibrations on molecular mechanisms.

    more » « less
  2. Energy-efficient microprocessors are essential for a wide range of applications. While near-threshold computing is a promising technique to improve energy efficiency, optimal supply demands from logic core and on-chip memory are conflicting. In this paper, we perform static reliability analysis of 6T SRAM and discover the variance among different sizing configuration and asymmetric minimum voltage requirements between read and write operations. We leverage this asymmetric property i n near-threshold processors equipped with voltage boosting capability by proposing an opportunistic dual-supply switching scheme with a write aggregation buffer. Our results show that proposed technique improves energy efficiency by more than 21.45% with approximate 10.19% performance speed-up. 
    more » « less
  3. Abstract

    We combine experimental, numerical, and analytical tools to design highly nonlinear mechanical metamaterials that exhibit a new phenomenon: gaps in amplitude for elastic vector solitons (i.e., ranges in amplitude where elastic soliton propagation is forbidden). Such gaps are fundamentally different from the spectral gaps in frequency typically observed in linear phononic crystals and acoustic metamaterials and are induced by the lack of strong coupling between the two polarizations of the vector soliton. We show that the amplitude gaps are a robust feature of our system and that their width can be controlled both by varying the structural properties of the units and by breaking the symmetry in the underlying geometry. Moreover, we demonstrate that amplitude gaps provide new opportunities to manipulate highly nonlinear elastic pulses, as demonstrated by the designed soliton splitters and diodes.

    more » « less