Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract All‐solid‐state potassium batteries emerge as promising alternatives to lithium batteries, leveraging their high natural abundance and cost‐effectiveness. Developing potassium solid electrolytes (SEs) with high room‐temperature ionic conductivity is critical for realizing efficient potassium batteries. In this study, we present the synthesis of K2.98Sb0.91S3.53Cl0.47, showcasing a room‐temperature ionic conductivity of 0.32 mS/cm and a low activation energy of 0.26 eV. This represents an increase of over two orders of magnitude compared to the parent compound K3SbS4, marking the highest reported ionic conductivity for non‐oxide potassium SEs. Solid‐state39K magic‐angle‐spinning nuclear magnetic resonance on K2.98Sb0.91S3.53Cl0.47reveals an increased population of mobile K+ions with fast dynamics. Ab initio molecular dynamics (AIMD) simulations further confirm a delocalized K+density and significantly enhanced K+diffusion. This work demonstrates diversification of the anion sublattice as an effective approach to enhance ion transport and highlights K2.98Sb0.91S3.53Cl0.47as a promising SE for all‐solid‐state potassium batteries.more » « lessFree, publicly-accessible full text available August 26, 2025
-
Abstract Polyanion rotations are often linked to cation diffusion, but the study of multiple polyanion systems is scarce due to the complexities in experimentally determining their dynamic interactions. This work focuses on BH4‐based argyrodites, synthesized to achieve a high conductivity of 11 mS cm−1. Advanced tools, including high‐resolution X‐ray diffraction, neutron pair distribution function analysis, and mutinuclear magic‐angle‐spinning nuclear magnetic resonance (NMR) spectroscopy and relaxometry, along with theoretical calculations, are employed to unravel the dynamic intricacies among the dual polyanion lattice and active charge carriers. The findings reveal that the anion sublattice of Li5.07PS4.07(BH4)1.93affords an even temporal distribution of Li among PS43−and BH4−, suggesting minimal trapping of the charge carriers. Moreover, the NMR relaxometry unveils rapid BH4−rotation on the order of ∼GHz, affecting the slower rotation of neighboring PS43−at ∼100 MHz. The PS43−rotation synchronizes with Li+motion and drives superionic transport. Thus, the PS43−and BH4−polyanions act as two‐staged dual motors, facilitating rapid Li+diffusion.more » « less
-
Abstract To enhance Li+transport in all‐solid‐state batteries (ASSBs), harnessing localized nanoscale disorder can be instrumental, especially in sulfide‐based solid electrolytes (SEs). In this investigation, the transformation of the model SE, Li3PS4, is delved into via the introduction of LiBr.31P nuclear magnetic resonance (NMR)unveils the emergence of a glassy PS43−network interspersed with Br−.6Li NMR corroborates swift Li+migration between PS43−and Br−, with increased Li+mobility indicated by NMR relaxation measurements. A more than fourfold enhancement in ionic conductivity is observed upon LiBr incorporation into Li3PS4. Moreover, a notable decrease in activation energy underscores the pivotal role of Br−incorporation within the anionic lattice, effectively reducing the energy barrier for ion conduction and transitioning Li+transport dimensionality from 2D to 3D. The compatibility of Li3PS4with Li metal is improved through LiBr incorporation, alongside an increase in critical current density from 0.34 to 0.50 mA cm−2, while preserving the electrochemical stability window. ASSBs with 3Li3PS4:LiBr as the SE showcase robust high‐rate and long‐term cycling performance. These findings collectively indicate the potential of lithium halide incorporation as a promising avenue to enhance the ionic conductivity and stability of SEs.more » « less