Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Daniel Ballin, Robert D (Ed.)The use of multimodal data allows excellent opportunities for human–computer interaction research and novel techniques regarding virtual and augmented reality (VR/AR) experiences. Collecting, coordinating, and synchronizing a large amount of data from multiple VR/AR hardware while maintaining a high framerate can be a daunting task, despite the compelling nature of multimodal data. The Lab Streaming Layer (LSL) is an open-source framework that enables the synchronous collection of various types of multimodal data, unlike existing expensive alternatives. However, despite its potential, this framework has not been fully adopted by the VR/AR research community. In this paper, we present a guideline of the LSL framework’s use in VR/AR research as well as report current trends by performing a comprehensive literature review on the subject. We extract 549 publications using LSL from January 2015 to March 2022. We analyze types of data, displays, and targeted application areas. We describe in-depth reviews of 38 selected papers and provide use of LSL in the VR/AR research community while highlighting benefits, challenges, and future opportunities.Free, publicly-accessible full text available October 1, 2024
-
Free, publicly-accessible full text available August 9, 2024
-
Daimi, K. ; Al Sadoon, A. (Ed.)In this paper, we introduce an NSF funded project that aims to develop a database that integrates genetic, environmental and age-related information to study their effects on health conditions of a rhesus monkey colony at Cayo Santiago, Puerto Rico, which has been founded since 1938. In this project, we will combine the osteology data with the rich genealogy and demographic information into a searchable and computer-interoperable knowledge model accessible through user-friendly interfaces. Backed by the integrated database, this system will provide researchers and the public information from the Cayo Santiago rhesus colony and the derived skeletal collection, a powerful non-human model for datamining to study human disease. Undergraduate and graduate students from diverse communities have been incorporated into research and development activities. Related materials are used as case studies in relevant classes at Mercer University to help train these undergraduate students into problem solvers.Free, publicly-accessible full text available May 1, 2024
-
Free, publicly-accessible full text available December 1, 2023
-
Abstract X-ray bursts are among the brightest stellar objects frequently observed in the sky by space-based telescopes. A type-I X-ray burst is understood as a violent thermonuclear explosion on the surface of a neutron star, accreting matter from a companion star in a binary system. The bursts are powered by a nuclear reaction sequence known as the rapid proton capture process (rp process), which involves hundreds of exotic neutron-deficient nuclides. At so-called waiting-point nuclides, the process stalls until a slower β + decay enables a bypass. One of the handful of rp process waiting-point nuclides is 64 Ge, which plays a decisive role in matter flow and therefore the produced X-ray flux. Here we report precision measurements of the masses of 63 Ge, 64,65 As and 66,67 Se—the relevant nuclear masses around the waiting-point 64 Ge—and use them as inputs for X-ray burst model calculations. We obtain the X-ray burst light curve to constrain the neutron-star compactness, and suggest that the distance to the X-ray burster GS 1826–24 needs to be increased by about 6.5% to match astronomical observations. The nucleosynthesis results affect the thermal structure of accreting neutron stars, which will subsequently modify the calculations of associated observables.Free, publicly-accessible full text available August 1, 2024
-
Abstract As we approach the era of quantum advantage, when quantum computers (QCs) can outperform any classical computer on particular tasks, there remains the difficult challenge of how to validate their performance. While algorithmic success can be easily verified in some instances such as number factoring or oracular algorithms, these approaches only provide pass/fail information of executing specific tasks for a single QC. On the other hand, a comparison between different QCs preparing nominally the same arbitrary circuit provides an insight for generic validation: a quantum computation is only as valid as the agreement between the results produced on different QCs. Such an approach is also at the heart of evaluating metrological standards such as disparate atomic clocks. In this paper, we report a cross-platform QC comparison using randomized and correlated measurements that results in a wealth of information on the QC systems. We execute several quantum circuits on widely different physical QC platforms and analyze the cross-platform state fidelities.Free, publicly-accessible full text available December 1, 2023
-
ABSTRACT Measuring magnetic fields in the interstellar medium and obtaining their distribution along line-of-sight (LOS) is very challenging with the traditional techniques. The Velocity Gradient Technique (VGT), which utilizes anisotropy of magnetohydrodynamic turbulence, provides an attractive solution. Targeting the central molecular zone (CMZ), we test this approach by applying the VGT to $\rm ^{12}CO$ and $\rm ^{13}CO$ (J = 1–0) data cubes. We first used the scousepy algorithm to decompose the CO line emissions into separate velocity components, and then we constructed pseudo-Stokes parameters via the VGT to map the plane-of-the-sky magnetic fields in three-dimension. We present the decomposed magnetic field maps and investigate their significance. While the LOS integrated magnetic field orientation is shown to be consistent with the polarized dust emission from the Planck survey at 353 GHz, individual velocity components may exhibit different magnetic fields. We present a scheme of magnetic field configuration in the CMZ based on the decomposed magnetic fields. In particular, we observe a nearly vertical magnetic field orientation in the dense clump near the Sgr B2 and a change in the outflow regions around the Sgr A*. Two high-velocity structures associated with an expanding ring in the CMZ show distinct swirling magnetic field structures.more »
-
ABSTRACT The central molecular zone (CMZ) plays an essential role in regulating the nuclear ecosystem of our Galaxy. To get an insight into magnetic fields of the CMZ, we employ the gradient technique (GT), which is rooted in the anisotropy of magnetohydrodynamic turbulence. Our analysis is based on the data of multiple wavelengths, including molecular emission lines, radio 1.4 GHz continuum image, and Herschel $70\, {\mu }{\rm m}$ image, as well as ionized [Ne ii] and Paschen-alpha emissions. The results are compared with the observations of Planck 353 GHz and High-resolution Airborne Wideband Camera Plus (HWAC+) $53\, {\mu }{\rm m}$ polarized dust emissions. We map the magnetic fields orientation at multiple wavelength across the central molecular zone, including close-ups of the Radio Arc and Sagittarius A West regions, on multiscales from ∼0.1 pc to 10 pc. The magnetic fields towards the central molecular zone traced by the GT are globally compatible with the polarization measurements, accounting for the contribution from the galactic foreground and background. This correspondence suggests that the magnetic field and turbulence are dynamically crucial in the galactic center. We find that the magnetic fields associated with the Arched filaments and the thermal components of the Radio Arc are in good agree withmore »