skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Qifu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traumatic brain injury (TBI) is a serious health issue. Studies have highlighted the severity of rotation-induced TBI. However, the role of cerebrospinal fluid (CSF) in transmitting the impact from the skull to the soft brain matter remains unclear. Herein, we use experiments and computations to define and probe this role in a simplified setup. A spherical hydrogel ball, serving as a soft brain model, was subjected to controlled rotation within a water bath, emulating the CSF, and filling a transparent cylinder. The cylinder and ball velocities, as well as the ball’s deformation over time, were measured. We found that the soft hydrogel ball is very sensitive to decelerating rotational impacts, experiencing significant deformation during the process. A finite-element code is written to simulate the process. The hydrogel ball is modeled as a poroelastic material infused with fluid and its coupling with the suspending fluid is handled by an arbitrary Lagrangian-Eulerian method. The results indicate that the density contrast, as well as the rotational velocity difference, between the hydrogel ball and the suspending fluid, play a central role in the ball’s deformation due to centrifugal forces. This approach contributes to a deeper understanding of brain injuries and may portend the development of preventive measures and improved treatment strategies. 
    more » « less
    Free, publicly-accessible full text available March 28, 2026
  2. Free, publicly-accessible full text available March 1, 2026