Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 14, 2025
-
Properties of the nuclear equation of state (EoS) can be probed by measuring the dynamical properties of nucleus-nucleus collisions. In this study, we present the directed flow (v1), elliptic flow (v2) and stopping (VarXZ) measured in fixed target Sn+ Sn collisions at 270AMeV with the S'll'RlT Time Projection Chamber. We perform Bayesian analyses in which EoS parameters are varied simultaneously within the Improved Quantum Molecular Dynamics-Skyrme (ImQMD-Sky) transport code to obtain a multivariate correlated constraint. The varied parameters include symmetry energy, S0, and slope of the symmetry energy, L, at saturation density, isoscalar effective mass, m;/mN, isovector effective mass, m/mN and the in-medium cross-section enhancement factor rJ. We find that the flow and VarXZ observables are sensitive to the splitting of proton and neutron effective masses and the in-medium cross-section. Comparisons of ImQMD-Sky predictions to the S'll' RJT data suggest a narrow range of preferred values for m;/mN, m/mN and 1/·more » « lessFree, publicly-accessible full text available June 1, 2025
-
Rosen, D (Ed.)This paper proposes a new test for a change point in the mean of high-dimensional data based on the spatial sign and self-normalization. The test is easy to implement with no tuning parameters, robust to heavy-tailedness and theoretically justified with both fixed-and sequential asymptotics under both null and alternatives, where n is the sample size. We demonstrate that the fixed-n asymptotics provide a better approximation to the finite sample distribution and thus should be preferred in both testing and testing-based estimation. To estimate the number and locations when multiple change-points are present, we propose to combine the p-value under the fixed-n asymptotics with the seeded binary segmentation (SBS) algorithm. Through numerical experiments, we show that the spatial sign based procedures are robust with respect to the heavy-tailedness and strong coordinate-wise dependence, whereas their non-robust counterparts proposed in Wang et al. (2022) [28] appear to under-perform. A real data example is also provided to illustrate the robustness and broad applicability of the proposed test and its corresponding estimation algorithm.more » « less
-
Hypothesis Understanding the microscopic driving force of water wetting is challenging and important for design of materials. The relations between structure, dynamics and hydrogen bonds of interfacial water can be investigated using molecular dynamics simulations. Experiments and simulations Contact angles at the alumina (0001) and ( ) surfaces are studied using both classical molecular dynamics simulations and experiments. To test the superhydrophilicity, the free energy cost of removing waters near the interfaces are calculated using the density fluctuations method. The strength of hydrogen bonds is determined by their lifetime and geometry. Findings Both surfaces are superhydrophilic and the (0001) surface is more hydrophilic. Interactions between surfaces and interfacial waters promote a templating effect whereby the latter are aligned in a pattern that follows the underlying lattice of the surfaces. Translational and rotational dynamics of interfacial water molecules are slower than in bulk water. Hydrogen bonds between water and both surfaces are asymmetric, water-to-aluminol ones are stronger than aluminol-to-water ones. Molecular dynamics simulations eliminate the impacts of surface contamination when measuring contact angles and the results reveal the microscopic origin of the macroscopic superhydrophilicity of alumina surfaces: strong water-to-aluminol hydrogen bonds.more » « less