skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wang, Runqing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> In this paper we develop a semi-standard Young tableau (SSYT) approach to construct a basis of non-factorizable superamplitudes in$$ \mathcal{N} $$ N = 1 massless supersymmetry. This amplitude basis can be directly translated to a basis for higher dimensional supersymmetric operators, yielding both the number of independent operators and their form. We deal with distinguishable (massless) chiral/vector superfields at first, then generalize the result to the indistinguishable case. Finally, we discuss the advantages and disadvantages of this method compared to the previously studied Hilbert series approach. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. A<sc>bstract</sc> In this paper we develop a Young diagram approach to constructing higher dimensional operators formed from massless superfields and their superderivatives in$$ \mathcal{N} $$ N = 1 supersymmetry. These operators are in one-to-one correspondence with non-factorizable terms in on-shell superamplitudes, which can be studied with massless spinor helicity techniques. By relating all spin-helicity variables to certain representations under a hidden U(N) symmetry behind the theory, we show each non-factorizable superamplitude can be identified with a specific Young tableau. The desired tableau is picked out of a more general set of U(N) tensor products by enforcing the supersymmetric Ward identities. We then relate these Young tableaux to higher dimensional superfield operators and list the rules to read operators directly from Young tableau. Using this method, we present several illustrative examples. 
    more » « less
  3. A<sc>bstract</sc> Following a recent publication, in this paper we count the number of independent operators at arbitrary mass dimension inN= 1 supersymmetric gauge theories and derive their field and derivative content. This work uses Hilbert series machinery and extends a technique from our previous work on handling integration by parts redundancies to vector superfields. The method proposed here can be applied to both abelian and non-abelian gauge theories and for any set of (chiral/antichiral) matter fields. We work through detailed steps for the abelian case with single flavor chiral superfield at mass dimension eight, and provide other examples in the appendices. 
    more » « less
  4. A bstract In this paper we introduce a Hilbert series approach to build the operator basis for a N = 1 supersymmetry theory with chiral superfields. We give explicitly the form of the corrections that remove redundancies due to the equations of motion and integration by parts. In addition, we derive the maps between the correction spaces. This technique allows us to calculate the number of independent operators involving chiral and antichiral superfields to arbitrarily high mass dimension. Using this method, we give several illustrative examples. 
    more » « less