skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wang, Ruoyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. Free, publicly-accessible full text available December 2, 2025
  3. Free, publicly-accessible full text available September 30, 2025
  4. This paper investigates the impact of mobility on underwater acoustic communication networks in which the propagation delay is comparable to or larger than the packet duration. An underwater acoustic wireless network, consisting of static and mobile nodes, is studied for its link-layer channel utilization. Synchronous and asynchronous media access control (MAC) protocols are employed with ALOHA, TDMA (time-division multiple access), and artificial intelligence (AI) agent nodes. The simulation results of a multi-node network show that the asynchronous MAC protocols achieve up to 6.66× higher channel utilization than synchronous protocols by allowing time slots to be shorter than the maximum propagation delay among nodes and permitting asynchronous transmission time. The high mobility of a few mobile nodes also favors asynchronous protocols and increases the overall channel utilization. However, node mobility causes more difficulties for the AI node to learn the environment, which may be ineffective to achieve higher gains in channel utilization.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  5. Free, publicly-accessible full text available July 17, 2025
  6. Free, publicly-accessible full text available August 14, 2025
  7. Free, publicly-accessible full text available August 14, 2025
  8. Free, publicly-accessible full text available July 24, 2025
  9. Free, publicly-accessible full text available August 14, 2025
  10. Free, publicly-accessible full text available August 14, 2025