skip to main content

Search for: All records

Creators/Authors contains: "Wang, S. -Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 8, 2023
  2. Abstract Historical wildfire events in California have shown a tendency to occur every five to seven years with a rapidly increasing tendency in recent decades. This oscillation is evident in multiple historical climate records, some more than a century long, and appears to be continuing. Analysis shows that this 5–7 year oscillation is linked to a sequence of anomalous large-scale climate patterns with an eastward propagation in both the ocean and atmosphere. While warmer temperature emerges from the northern central Pacific to the west coast of California, La Niña pattern develops simultaneously, implying that the lifecycle of the El Niño-Southern Oscillation that takes multiple years to form could be a trigger. The evolving patterns of the Pacific-to-North America atmospheric teleconnection suggest the role of tropical and subtropical forcing embedded in this lifecycle. These results highlight the semi-cyclical hydrological behavior as a climate driver for wildfire variability in California.
  3. Unprecedented heatwave-drought concurrences in the past two decades have been reported over inner East Asia. Tree-ring–based reconstructions of heatwaves and soil moisture for the past 260 years reveal an abrupt shift to hotter and drier climate over this region. Enhanced land-atmosphere coupling, associated with persistent soil moisture deficit, appears to intensify surface warming and anticyclonic circulation anomalies, fueling heatwaves that exacerbate soil drying. Our analysis demonstrates that the magnitude of the warm and dry anomalies compounding in the recent two decades is unprecedented over the quarter of a millennium, and this trend clearly exceeds the natural variability range. The “hockey stick”–like change warns that the warming and drying concurrence is potentially irreversible beyond a tipping point in the East Asian climate system.
  4. In recent years, a pair of large-scale circulation patterns consisting of an anomalous ridge over northwestern North America and trough over northeastern North America was found to accompany extreme winter weather events such as the 2013–2015 California drought and eastern U.S. cold outbreaks. Referred to as the North American winter dipole (NAWD), previous studies have found both a marked natural variability and a warming-induced amplification trend in the NAWD. In this study, we utilized multiple global reanalysis datasets and existing climate model simulations to examine the variability of the winter planetary wave patterns over North America and to better understand how it is likely to change in the future. We compared between pre- and post-1980 periods to identify changes to the circulation variations based on empirical analysis. It was found that the leading pattern of the winter planetary waves has changed, from the Pacific–North America (PNA) mode to a spatially shifted mode such as NAWD. Further, the potential influence of global warming on NAWD was examined using multiple climate model simulations.