The transfer of photosynthetically produced organic carbon from surface to mesopelagic waters draws carbon dioxide from the atmosphere1. However, current observation-based estimates disagree on the strength of this biological carbon pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP estimates, indicating limited representations of the known carbon export pathways3. Here we use several decades of hydrographic observations to produce a top-down estimate of the strength of the BCP with an inverse biogeochemical model that implicitly accounts for all known export pathways. Our estimate of total organic carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year−1, with only two-thirds reaching 100 m depth owing to rapid remineralization of organic matter in the upper water column. Partitioned by sequestration time below the euphotic zone,
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract τ , the globally integrated organic carbon production rate withτ > 3 months is 11.09 ± 1.02 Pg C year−1, dropping to 8.25 ± 0.30 Pg C year−1forτ > 1 year, with 81% contributed by the non-advective-diffusive vertical flux owing to sinking particles and vertically migrating zooplankton. Nevertheless, export of organic carbon by mixing and other fluid transport of dissolved matter and suspended particles remains regionally important for meeting the respiratory carbon demand. Furthermore, the temperature dependence of the sequestration efficiency inferred from our inversion suggests that future global warming may intensify the recycling of organic matter in the upper ocean, potentially weakening the BCP. -
Abstract The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular‐level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon‐to‐phosphorus ratios (
R C :P ) on the distribution of export production. We implement a trait‐based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relatingR C :P to temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr−1) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (R 2 > 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changingR C :P to buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes. -
Abstract Marine dissolved organic phosphorus (DOP) serves as an organic nutrient to marine autotrophs, sustaining a portion of annual net community production (ANCP). Numerical models of ocean circulation and biogeochemistry have diagnosed the magnitude of this process at regional to global scales but have thus far been validated against DOP observations concentrated within the Atlantic basin. Here we assimilate a new marine DOP data set with global coverage to optimize an inverse model of the ocean phosphorus cycle to investigate the regionally variable role of marine DOP utilization by autotrophs contributing to ANCP. We find ∼25% of ANCP accumulates as DOP with a regionally variable pattern ranging from 8% to 50% across nine biomes investigated. Estimated mean surface ocean DOP lifetimes of ∼0.5–2 years allow for transport of DOP from regions of net production to net consumption in subtropical gyres. Globally, DOP utilization by autotrophs sustains ∼14% (0.9 Pg C yr−1) of ANCP with regional contributions as large as ∼75% within the oligotrophic North Atlantic and North Pacific. Shallow export and remineralization of DOP within the ocean subtropics contributes ∼30%–80% of phosphate regeneration within the upper thermocline (<300 m). These shallow isopycnals beneath the subtropical gyres harboring the preponderance of remineralized DOP outcrop near the poleward edge of each gyre, which when combined with subsequent lateral transport equatorward by Ekman convergence, provide a shallow overturning loop retaining phosphorus within the subtropical biome, likely helping to sustain gyre ANCP over multiannual to decadal timescales.
-
Climate-driven depletion of ocean oxygen strongly impacts the global cycles of carbon and nutrients as well as the survival of many animal species. One of the main uncertainties in predicting changes to marine oxygen levels is the regulation of the biological respiration demand associated with the biological pump. Derived from the Redfield ratio, the molar ratio of oxygen to organic carbon consumed during respiration (i.e., the respiration quotient,
) is consistently assumed constant but rarely, if ever, measured. Using a prognostic Earth system model, we show that a 0.1 increase in the respiration quotient from 1.0 leads to a 2.3% decline in global oxygen, a large expansion of low-oxygen zones, additional water column denitrification of 38 Tg N/y, and the loss of fixed nitrogen and carbon production in the ocean. We then present direct chemical measurements of using a Pacific Ocean meridional transect crossing all major surface biome types. The observed has a positive correlation with temperature, and regional mean values differ significantly from Redfield proportions. Finally, an independent global inverse model analysis constrained with nutrients, oxygen, and carbon concentrations supports a positive temperature dependence of in exported organic matter. We provide evidence against the common assumption of a static biological link between the respiration of organic carbon and the consumption of oxygen. Furthermore, the model simulations suggest that a changing respiration quotient will impact multiple biogeochemical cycles and that future warming can lead to more intense deoxygenation than previously anticipated.