skip to main content

Search for: All records

Creators/Authors contains: "Wang, Xiangyue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We study damping signatures at the Jiangmen Underground Neutrino Observatory (JUNO), a medium-baseline reactor neutrino oscillation experiment. These damping signatures are motivated by various new physics models, including quantum decoherence, ν 3 decay, neutrino absorption, and wave packet decoherence. The phenomenological effects of these models can be characterized by exponential damping factors at the probability level. We assess how well JUNO can constrain these damping parameters and how to disentangle these different damping signatures at JUNO. Compared to current experimental limits, JUNO can significantly improve the limits on τ 3 / m 3 in the ν 3 decay model, the width of the neutrino wave packet σ x , and the intrinsic relative dispersion of neutrino momentum σ rel .
    Free, publicly-accessible full text available June 1, 2023
  2. A bstract JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼ 1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV.
  3. Abstract The OSIRIS detector is a subsystem of the liquid scintillator filling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $$10^{-16}\hbox { g/g}$$ 10 - 16 g/g of $$^{238}\hbox {U}$$ 238 U and $$^{232}\hbox {Th}$$ 232 Th requires a large ( $$\sim 20\,\hbox {m}^3$$ ∼ 20 m 3 ) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup.
  4. Abstract Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $$\nu _e$$ ν e  and $$\nu _\mu $$ ν μ  fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then processed by the detector simulation. The excellent timing resolution of the 3” PMT light detection system of JUNO detector and the much higher light yield for scintillation over Cherenkov allow to measure the time structure of the scintillation light with very high precision. Since $$\nu _e$$ ν e  and $$\nu _\mu $$ ν μ  interactions produce a slightly different light pattern, the different time evolution of light allows to discriminate the flavor of primary neutrinos. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrummore »from the detector experimental observables. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region.« less