skip to main content

Search for: All records

Creators/Authors contains: "Wang, Xianqiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Current brain mapping methods highly depend on the regularity, or commonality, of anatomical structure, by forcing the same atlas to be matched to different brains. As a result, individualized structural information can be overlooked. Recently, we conceptualized a new type of cortical folding pattern called the 3-hinge gyrus (3HG), which is defined as the conjunction of gyri coming from three directions. Many studies have confirmed that 3HGs are not only widely existing on different brains, but also possess both common and individual patterns. In this work, we put further effort, based on the identified 3HGs, to establish the correspondences of individual 3HGs. We developed a learning-based embedding framework to encode individual cortical folding patterns into a group of anatomically meaningful embedding vectors (cortex2vector). Each 3HG can be represented as a combination of these embedding vectors via a set of individual specific combining coefficients. In this way, the regularity of folding pattern is encoded into the embedding vectors, while the individual variations are preserved by the multi-hop combination coefficients. Results show that the learned embeddings can simultaneously encode the commonality and individuality of cortical folding patterns, as well as robustly infer the complicated many-to-many anatomical correspondences among different brains.

  2. Abstract The 3-hinge gyral folding is the conjunction of gyrus crest lines from three different orientations. Previous studies have not explored the possible mechanisms of formation of such 3-hinge gyri, which are preserved across species in primate brains. We develop a biomechanical model to mimic the formation of 3-hinge patterns on a real brain and determine how special types of 3-hinge patterns form in certain areas of the model. Our computational and experimental imaging results show that most tertiary convolutions and exact locations of 3-hinge patterns after growth and folding are unpredictable, but they help explain the consistency of locations and patterns of certain 3-hinge patterns. Growing fibers within the white matter is posited as a determining factor to affect the location and shape of these 3-hinge patterns. Even if the growing fibers do not exert strong enough forces to guide gyrification directly, they still may seed a heterogeneous growth profile that leads to the formation of 3-hinge patterns in specific locations. A minor difference in initial morphology between two growing model brains can lead to distinct numbers and locations of 3-hinge patterns after folding.