skip to main content


Search for: All records

Creators/Authors contains: "Wang, Xiaojian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 23, 2025
  2. Free, publicly-accessible full text available April 1, 2025
  3. Here, we study the homogenization behavior and microstructure of seven Ni-Al-Ti alloys with quaternary additions of γ forming elements 4Cr, 4Co, 4Ru, 4Mo, 4Hf, 4 W and 2Re. To design a homogenization treatment, the as-cast microstructure is analyzed revealing the diffusion distances x between dendrite cores and interdendritic regions. The temperatures for homogenization are determined using differential scanning calorimetry (DSC) and Thermo-Calc simulations, to be between 1150 and 1275 °C. The time to achieve homogenization is modelled based on the residual segregation index δ utilizing diffusion distance, homogenization temperature and diffusion data. Electron probe micro analyzer (EPMA) measurements show that our predictions match for the 4Cr, 4Co, 4Ru, 4 W and 2Re alloys while the 4Hf alloy shows insufficient homogenization. Transmission electron microscopy (TEM) reveals a two-phase γ/γ’ microstructure after 750 °C / 24 h, whereby the 4Co and 4Ru alloys form hierarchical microstructures. We observe γ plates in the 4Co alloy and γ spheres in the 4Ru alloy. Ru in the 4Ru alloy is involved in stabilizing the morphology of γ spheres. We provide a straightforward method for the design of homogenization treatments of Ni-based superalloys and demonstrate an alloy design pathway for tailoring the phase stability of hierarchical microstructures. 
    more » « less