skip to main content

Search for: All records

Creators/Authors contains: "Wang, Xijun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The oxidative coupling of methane to higher hydrocarbons offers a promising autothermal approach for direct methane conversion, but its progress has been hindered by yield limitations, high temperature requirements, and performance penalties at practical methane partial pressures (~1 atm). In this study, we report a class of Li2CO3-coated mixed rare earth oxides as highly effective redox catalysts for oxidative coupling of methane under a chemical looping scheme. This catalyst achieves a single-pass C2+yield up to 30.6%, demonstrating stable performance at 700 °C and methane partial pressures up to 1.4 atm. In-situ characterizations and quantum chemistry calculations provide insights into the distinct roles of the mixed oxide core and Li2CO3shell, as well as the interplay between the Pr oxidation state and active peroxide formation upon Li2CO3coating. Furthermore, we establish a generalized correlation between Pr4+content in the mixed lanthanide oxide and hydrocarbons yield, offering a valuable optimization strategy for this class of oxidative coupling of methane redox catalysts.

    more » « less
  2. Core-shell–structured “perovskite oxide@molten LiBr” redox catalyst anaerobically converts n -butane into butadiene. 
    more » « less
  3. The current study reports AxA’1-xByB’1-yO3-𝛿 perovskite redox catalysts (RCs) for CO2-splitting and methane partial oxidation (POx) in a cyclic redox scheme. Strontium (Sr) and iron (Fe) were chosen as A and B site elements with A’ being lanthanum (La), samarium (Sm) or yttrium (Y), and B’ being manganese (Mn), or titanium (Ti) to tailor their equilibrium oxygen partial pressures (P_(O_2 ) s) for CO2-splitting and methane partial oxidation. DFT calculations were performed for predictive optimization of the oxide materials whereas experimental investigation confirmed the DFT predicted redox performance. The redox kinetics of the RCs improved significantly by 1 wt.% ruthenium (Ru) impregnation without affecting their redox thermodynamics. Ru impregnated LaFe0.375Mn0.625O3 (A=0, A’=La, B=Fe, and B’=Mn) was the most promising RC in terms of its superior redox performance (CH4/CO2 conversion >90% and CO selectivity~ 95%) at 800oC. Long-term redox testing over Ru impregnated LaFe0.375Mn0.625O3 indicated stable performance during the first 30 cycles following with a ~25% decrease in the activity during the last 70 cycles. Air treatment was effective to reactivate the redox catalyst. Detailed characterizations revealed the underlying mechanism for redox catalyst deactivation and reactivation. This study not only validated a DFT guided mixed oxide design strategy for CO2 utilization but also provides potentially effective approaches to enhance redox kinetics as well as long-term redox catalyst performance. 
    more » « less
  4. Abstract

    This review spotlights the role of atomic‐level modeling in research on metal‐organic frameworks (MOFs), especially the key methodologies of density functional theory (DFT), Monte Carlo (MC) simulations, and molecular dynamics (MD) simulations. The discussion focuses on how periodic and cluster‐based DFT calculations can provide novel insights into MOF properties, with a focus on predicting structural transformations, understanding thermodynamic properties and catalysis, and providing information or properties that are fed into classical simulations such as force field parameters or partial charges. Classical simulation methods, highlighting force field selection, databases of MOFs for high‐throughput screening, and the synergistic nature of MC and MD simulations, are described. By predicting equilibrium thermodynamic and dynamic properties, these methods offer a wide perspective on MOF behavior and mechanisms. Additionally, the incorporation of machine learning (ML) techniques into quantum and classical simulations is discussed. These methods can enhance accuracy, expedite simulation setup, reduce computational costs, as well as predict key parameters, optimize geometries, and estimate MOF stability. By charting the growth and promise of computational research in the MOF field, the aim is to provide insights and recommendations to facilitate the incorporation of computational modeling more broadly into MOF research.

    more » « less
  5. null (Ed.)
  6. Abstract

    Styrene is an important commodity chemical that is highly energy and CO2intensive to produce. We report a redox oxidative dehydrogenation (redox-ODH) strategy to efficiently produce styrene. Facilitated by a multifunctional (Ca/Mn)1−xO@KFeO2core-shell redox catalyst which acts as (i) a heterogeneous catalyst, (ii) an oxygen separation agent, and (iii) a selective hydrogen combustion material, redox-ODH auto-thermally converts ethylbenzene to styrene with up to 97% single-pass conversion and >94% selectivity. This represents a 72% yield increase compared to commercial dehydrogenation on a relative basis, leading to 82% energy savings and 79% CO2emission reduction. The redox catalyst is composed of a catalytically active KFeO2shell and a (Ca/Mn)1−xO core for reversible lattice oxygen storage and donation. The lattice oxygen donation from (Ca/Mn)1−xO sacrificially stabilizes Fe3+in the shell to maintain high catalytic activity and coke resistance. From a practical standpoint, the redox catalyst exhibits excellent long-term performance under industrially compatible conditions.

    more » « less
  7. Abstract

    Chemical looping air separation (CLAS) is a promising technology for oxygen generation with high efficiency. The key challenge for CLAS is to design robust oxygen sorbents with suitable redox properties and fast redox kinetics. In this work, perovskite-structured Sr1-xCaxFe1-yCoyO3oxygen sorbents were investigated and demonstrated for oxygen production with tunable redox properties, high redox rate, and excellent thermal/steam stability. Cobalt doping at B site was found to be highly effective, 33% improvement in oxygen productivity was observed at 500 °C. Moreover, it stabilizes the perovskite structure and prevents phase segregation under pressure swing conditions in the presence of steam. Scalable synthesis of Sr0.8Ca0.2Fe0.4Co0.6O3oxygen sorbents was carried out through solid state reaction, co-precipitation, and sol-gel methods. Both co-precipitation and sol-gel methods are capable of producing Sr0.8Ca0.2Fe0.4Co0.6O3sorbents with satisfactory phase purity, high oxygen capacity, and fast redox kinetics. Large scale evaluation of Sr0.8Ca0.2Fe0.4Co0.6O3, using an automated CLAS testbed with over 300 g sorbent loading, further demonstrated the effectiveness of the oxygen sorbent to produce 95% pure O2with a satisfactory productivity of 0.04 gO2gsorbent−1h−1at 600 °C.

    more » « less
  8. Abstract

    The structural and compositional flexibility of perovskite oxides and their complex yet tunable redox properties offer unique optimization opportunities for thermochemical energy storage (TCES). To improve the relatively inefficient and empirical‐based approaches, a high‐throughput combinatorial approach for accelerated development and optimization of perovskite oxides for TCES is reported here. Specifically, thermodynamic‐based screening criteria are applied to the high‐throughput density functional theory (DFT) simulation results of over 2000 A/B‐site doped SrFeO3−δ. 61 promising TCES candidates are selected based on the DFT prediction. Of these, 45 materials with pure perovskite phases are thoroughly evaluated. The experimental results support the effectiveness of the high‐throughput approach in determining both the oxygen capacity and the oxidation enthalpy of the perovskite oxides. Many of the screened materials exhibit promising performance under practical operating conditions: Sr0.875Ba0.125FeO3−δexhibits a chemical energy storage density of 85 kJ kgABO3−1under an isobaric condition (with air) between 400 and 800 °C whereas Sr0.125Ca0.875Fe0.25Mn0.75O3−δdemonstrates an energy density of 157 kJ kgABO3−1between 400 °C/0.2 atm O2and 1100 °C/0.01 atm O2. An improved set of optimization criteria is also developed, based on a combination of DFT and experimental results, to improve the effectiveness for accelerated development of redox‐active perovskite oxides.

    more » « less