skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Wang, Xingchen T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nitrogen isotope ratios in fossil teeth place extinct megatooth sharks at the top of the marine food web. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Dissolved organic nitrogen (DON) is the dominant form of fixed nitrogen in most low and middle latitude ocean surface waters. Here, we report measurements of DON isotopic composition (δ15N) from the west South China Sea (SCS), with the goal of providing new insight into DON cycling. The concentration of DON in the surface ocean is correlated (r = 0.70,p < 0.0001) with chlorophyllaconcentration, indicating DON production in these surface waters. The concentration and δ15N of DON fall in a relatively narrow range in the surface ocean (4.6 ± 0.1 μM and 4.3 ± 0.2‰ vs. air, respectively; ±SD), similar to other ocean regions. The mean DON δ15N above 50 m (4.5 ± 0.3‰) is similar to the δ15N of nitrate in the “shallow subsurface” (i.e., immediately below the euphotic zone; 4.6 ± 0.2‰) but is higher than the δ15N of suspended particles in the surface ocean (~2.3‰). This set of isotopic relationships has been observed previously (e.g., in the oligotrophic North Atlantic and North Pacific) and can be explained by the cycling of N between particulate organic nitrogen (PON), DON, and ammonium, in which an isotope effect associated with DON degradation preferentially concentrates15N in DON. Consistent with this view, a negative correlation (r = 0.70) between the concentration and the δ15N of DON is observed in the upper 75 m, suggesting an isotope effect of ~4.9 ± 0.4‰ for DON degradation. Comparing the DON δ15N data from the SCS with other regions, we find that the δ15N difference between euphotic zone DON and shallow subsurface nitrate δ15N (Δδ15N(DON‐NO3)) rises from ocean regions of inferred net DON production to regions of net DON consumption, with the SCS representing an intermediate case.

    more » « less