skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Xugao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The search for simple principles that underlie the spatial structure and dynamics of plant communities is a long-standing challenge in ecology. In particular, the relationship between species coexistence and the spatial distribution of plants is challenging to resolve in species-rich communities. Here we present a comprehensive analysis of the spatial patterns of 720 tree species in 21 large forest plots and their consequences for species coexistence. We show that species with low abundance tend to be more spatially aggregated than more abundant species. Moreover, there is a latitudinal gradient in the strength of this negative aggregation–abundance relationship that increases from tropical to temperate forests. We suggest, in line with recent work, that latitudinal gradients in animal seed dispersal and mycorrhizal associations may jointly generate this pattern. By integrating the observed spatial patterns into population models8, we derive the conditions under which species can invade from low abundance in terms of spatial patterns, demography, niche overlap and immigration. Evaluation of the spatial-invasion condition for the 720 tree species analysed suggests that temperate and tropical forests both meet the invasion criterion to a similar extent but through contrasting strategies conditioned by their spatial patterns. Our approach opens up new avenues for the integration of observed spatial patterns into ecological theory and underscores the need to understand the interaction among spatial patterns at the neighbourhood scale and multiple ecological processes in greater detail. 
    more » « less
    Free, publicly-accessible full text available February 26, 2026
  2. Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance. Synchrony was high at local scales of less than 1 km, with estimated Pearson correlations of approximately 0.6–0.8 between species’ population growth rates across pairs of quadrats. Synchrony decayed by approximately 17–44% with each order of magnitude increase in distance but was still detectably positive at distances of 100 km and beyond. Dispersal cannot explain observed large-scale synchrony because typical seed dispersal distances (<100 m) are far too short to couple the dynamics of distant forests on decadal timescales. We attribute the observed synchrony in forest dynamics primarily to the effect of spatially synchronous environmental drivers (the Moran effect), in particular climate, although pests, pathogens and anthropogenic drivers may play a role for some species. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. null (Ed.)
  4. Seed distribution and deposition patterns around parent trees are strongly affected by functional traits and therefore influence the development of plant communities. To assess the limitations of seed dispersal and the extent to which diaspore and neighbouring parental traits explain seed rain, we used a 9-year seed data set based on 150 seed traps in a 25-ha area of a temperate forest in the Changbai Mountain. Among 480,598 seeds belonging to 12 families, 17 genera, and 26 species were identified, only 54% of the species with mature trees in the community were represented in seeds collected over the 9 years, indicating a limitation in seed dispersal. Understory species were most limited; overstory species were least limited. Species with wind-dispersed seed had the least limitation, while the lowest similarity in species richness was for animal-dispersed species followed by gravity-dispersed species; fleshy-fruited species had stronger dispersal limitations than dry-fruited species. Generalized linear mixed models showed that relative basal area had a significant positive effect on seed abundance in traps, while the contribution of diaspore traits was low for nearly all groups. These results suggest that tree traits had the strongest contribution to seed dispersal and deposition for all functional groups examined here. These findings strengthen the knowledge that tree traits are key in explaining seed deposition patterns, at least at the primary dispersal stage. This improved knowledge of sources of seeds that are dispersed could facilitate greater understanding of seedling and community dynamics in temperate forests. 
    more » « less
  5. Pascual, Mercedes (Ed.)
    When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands’ physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees’ distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions. 
    more » « less
  6. null (Ed.)
    Abstract Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity. 
    more » « less