skip to main content

Search for: All records

Creators/Authors contains: "Wang, Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Free, publicly-accessible full text available April 1, 2023
  3. Free, publicly-accessible full text available April 1, 2023
  4. Abstract 316L stainless steel (316L SS) is a flagship material for structural applications in corrosive environments, having been extensively studied for decades for its favorable balance between mechanical and corrosion properties. More recently, 316L SS has also proven to have excellent printability when parts are produced with additive manufacturing techniques, notably laser powder bed fusion (LPBF). Because of the harsh thermo-mechanical cycles experienced during rapid solidification and cooling, LPBF processing tends to generate unique microstructures. Strong heterogeneities can be found inside grains, including trapped elements, nano-inclusions, and a high density of dislocations that form the so-called cellular structure. Interestingly, LPBFmore »316L SS not only exhibits better mechanical properties than its conventionally processed counterpart, but it also usually offers much higher resistance to pitting in chloride solutions. Unfortunately, the complexity of the LPBF microstructures, in addition to process-induced defects, such as porosity and surface roughness, have slowed progress toward linking specific microstructural features to corrosion susceptibility and complicated the development of calibrated simulations of pitting phenomena. The first part of this article is dedicated to an in-depth review of the microstructures found in LPBF 316L SS and their potential effects on the corrosion properties, with an emphasis on pitting resistance. The second part offers a perspective of some relevant modeling techniques available to simulate the corrosion of LPBF 316L SS, including current challenges that should be overcome.« less
    Free, publicly-accessible full text available April 1, 2023
  5. Free, publicly-accessible full text available November 1, 2022
  6. Free, publicly-accessible full text available November 1, 2022
  7. Free, publicly-accessible full text available December 16, 2022
  8. Free, publicly-accessible full text available October 4, 2022
  9. Monte Carlo (MC) methods are widely used in many research areas such as physical simulation, statistical analysis, and machine learning. Application of MC methods requires drawing fast mixing samples from a given probability distribution. Among existing sampling methods, the Hamiltonian Monte Carlo (HMC) utilizes gradient information during Hamiltonian simulation and can produce fast mixing samples at the highest efficiency. However, without carefully chosen simulation parameters for a specific problem, HMC generally suffers from simulation locality and computation waste. As a result, the No-U-Turn Sampler (NUTS) has been proposed to automatically tune these parameters during simulation and is the current state-of-the-artmore »sampling algorithm. However, application of NUTS requires frequent gradient calculation of a given distribution and high-volume vector processing, especially for large-scale problems, leading to drawing an expensively large number of samples and a desire of hardware acceleration. While some hardware acceleration works have been proposed for traditional Markov Chain Monte Carlo (MCMC) and HMC methods, there is no existing work targeting hardware acceleration of the NUTS algorithm. In this paper, we present the first NUTS accelerator on FPGA while addressing the high complexity of this state-of-the-art algorithm. Our hardware and algorithm co-optimizations include an incremental resampling technique which leads to a more memory efficient architecture and pipeline optimization for multi-chain sampling to maximize the throughput. We also explore three levels of parallelism in the NUTS accelerator to further boost performance. Compared with optimized C++ NUTS package: RSTAN, our NUTS accelerator can reach a maximum speedup of 50.6X and an energy improvement of 189.7X.« less
    Free, publicly-accessible full text available July 7, 2022
  10. Ultrafast resonant soft x-ray scattering is used to monitor the dynamics of the charge density wave order in YBa 2 Cu 3 O 6+x .
    Free, publicly-accessible full text available May 20, 2023