skip to main content

Search for: All records

Creators/Authors contains: "Wang, Yan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2023
  2. Free, publicly-accessible full text available July 1, 2023
  3. Free, publicly-accessible full text available June 15, 2023
  4. Free, publicly-accessible full text available May 1, 2023
  5. Free, publicly-accessible full text available June 27, 2023
  6. Free, publicly-accessible full text available August 9, 2023
  7. Free, publicly-accessible full text available June 10, 2023
  8. Abstract

    Cell lines have become an integral resource and tool for conducting biological experiments ever since the Hela cell line was first developed (Scherer et al. in J Exp Med 97:695–710, 1953). They not only allow detailed investigation of molecular pathways but are faster and more cost-effective than most in vivo approaches. The last decade saw many emerging model systems strengthening basic science research. However, lack of genetic and molecular tools in these newer systems pose many obstacles.Astyanax mexicanusis proving to be an interesting new model system for understanding metabolic adaptation. To further enhance the utility of this system, we developed liver-derived cell lines from both surface-dwelling and cave-dwelling morphotypes. In this study, we provide detailed methodology of the derivation process along with comprehensive biochemical and molecular characterization of the cell lines, which reflect key metabolic traits of cavefish adaptation. We anticipate these cell lines to become a useful resource for theAstyanaxcommunity as well as researchers investigating fish biology, comparative physiology, and metabolism.

  9. Azaindoles and azaindolines are important core structures in pharmaceuticals and natural products, which have found wide applications in the field of medicinal chemistry. In this study, we developed a novel one-pot method for selectively synthesizing 7-azaindoles and 7-azaindolines, which can be generated by reactions between the readily available 2-fluoro-3-methylpyridine and arylaldehydes. The chemoselectivity is counterion dependent, with LiN(SiMe 3 ) 2 generating 7-azaindolines and KN(SiMe 3 ) 2 furnishing 7-azaindoles. A range of substituents can be introduced under these conditions, providing handles for further elaboration and functionalization.
    Free, publicly-accessible full text available May 3, 2023
  10. Free, publicly-accessible full text available May 1, 2023