skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Free, publicly-accessible full text available September 1, 2025
  3. In both particle and wave descriptions of phonons, the dense, aperiodically arranged interfaces in aperiodic superlattices are expected to strongly attenuate thermal transport due to phonon-interface scattering or broken long-range coherence. However, non-trivial thermal conductivity is still observed in these structures. In this study, we reveal that incoherent modes propagating in the aperiodic superlattice can be converted, through interference, into coherent modes defined by an approximate dispersion relation. This conversion leads to high transmission across the aperiodic superlattice structure, which contains hundreds of interfaces, ultimately resulting in non-trivial thermal conductivity. Such incoherent-to-coherent mode-conversion behavior is extensively observed in periodic superlattices. This work suggests an effective strategy to manipulate the phonon dispersion relation through layer patterning or material choice, enabling precise control of phonon transmission across aperiodic superlattices.

     
    more » « less
    Free, publicly-accessible full text available July 22, 2025
  4. Free, publicly-accessible full text available August 1, 2025
  5. Biometric authentication systems are increasingly needed across a broad range of applications including in smart city environments (e.g., entering hotels), and in smart home environments (e.g., controlling smart devices). Traditional methods, such as face-based and fingerprint-based authentication, usually incur high costs to be installed in all this kind of environments. In this paper, we develop a ubiquitous low-effort user authentication approach, mmPalm, based on palm recognition using millimeter wave (mmWave) signals. mmWave technology has been adopted by WiGig and 5G, making mmPalm a low-cost solution that can be widely adopted in public places. In addition, the high resolution of mmWave signals allows mmPalm to extract detailed palm characteristics (e.g., palm geometry, skin thickness, and texture) that can assemble distinctive palmprints for user authentication. Our innovative virtual antennas design further increases the spatial resolution of a commercial mmWave device, enabling it to fully capture the comprehensive palmprint features. Moreover, to address the challenge of small-scale environmental changes (e.g., variations in palm-device distances and palm orientations), we design a novel palm profile augmentation method, utilizing a Conditional Generative Adversarial Network (cGAN) to generate synthetic palm profiles for mitigating palm instability. Furthermore, we design a cross-environment adaptation framework based on transfer learning to address the challenge of large-scale environmental changes, including multipath variations introduced by human bodies and nearby furniture. Extensive experiments with 30 participants through 6 months demonstrate that mmPalm achieves 99% authentication accuracy with resilience against different types of attacks, including random, impersonation, and counterfeit. 
    more » « less
    Free, publicly-accessible full text available September 9, 2025
  6. Free, publicly-accessible full text available August 1, 2025
  7. Abstract

    The interaction of plant mitochondrial and nuclear genetic systems is exemplified by mitochondria-encoded cytoplasmic male sterility (CMS) under the control of nuclear restorer-of-fertility genes. The S type of CMS in maize is characterized by a pollen collapse phenotype and a unique paradigm for fertility restoration in which numerous nuclear restorer-of-fertility lethal mutations rescue pollen function but condition homozygous-lethal seed phenotypes. Two nonallelic restorer mutations recovered from Mutator transposon-active lines were investigated to determine the mechanisms of pollen fertility restoration and seed lethality. Mu Illumina sequencing of transposon-flanking regions identified insertion alleles of nuclear genes encoding mitochondrial ribosomal proteins RPL6 and RPL14 as candidate restorer-of-fertility lethal mutations. Both candidates were associated with lowered abundance of mitochondria-encoded proteins in developing maize pollen, and the rpl14 mutant candidate was confirmed by independent insertion alleles. While the restored pollen functioned despite reduced accumulation of mitochondrial respiratory proteins, normal-cytoplasm plants heterozygous for the mutant alleles showed a significant pollen transmission bias in favor of the nonmutant Rpl6 and Rpl14 alleles. CMS-S fertility restoration affords a unique forward genetic approach to investigate the mitochondrial requirements for, and contributions to, pollen and seed development.

     
    more » « less
  8. Abstract

    Nanomeshes, often referred to as phononic crystals, have been extensively explored for their unique properties, including phonon coherence and ultralow thermal conductivity (κ). However, experimental demonstrations of phonon coherence are rare and indirect, often relying on comparison with numerical modeling. Notably, a significant aspect of phonon coherence, namely the disorder-induced reduction in κ observed in superlattices, has yet to be experimentally demonstrated. In this study, through atomistic modeling and spectral analysis, we systematically investigate and compare phonon transport behaviors in graphene nanomeshes, characterized by 1D line-like hole boundaries, and silicon nanomeshes, featuring 2D surface-like hole boundaries, while considering various forms of hole boundary roughness. Our findings highlight that to demonstrate disorder-induced reduction in κ of nanomeshes, optimal conditions include low temperature, smooth and planar hole boundaries, and the utilization of thick films composed of 3D materials.

     
    more » « less
    Free, publicly-accessible full text available May 3, 2025
  9. Free, publicly-accessible full text available May 1, 2025
  10. Free, publicly-accessible full text available May 29, 2025