skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. A modeling-driven materials-by-design framework is provided to explore the multifunctional performance of conjugated polymers (CPs), offering new insights for the design and development of advanced CP-based materials and devices.

     
    more » « less
    Free, publicly-accessible full text available October 10, 2025
  3. Free, publicly-accessible full text available August 31, 2025
  4. Free, publicly-accessible full text available June 28, 2025
  5. Distributed data stores typically provide weak isolation levels, which are efficient but can lead to unserializable behaviors, which are hard for programmers to understand and often result in errors. This paper presents the first dynamic predictive analysis for data store applications under weak isolation levels, called IsoPredict. Given an observed serializable execution of a data store application, IsoPredict generates and solves SMT constraints to find an unserializable execution that is a feasible execution of the application. IsoPredict introduces novel techniques to handle divergent application behavior; to solve mutually recursive sets of constraints; and to balance coverage, precision, and performance. An evaluation shows IsoPredict finds unserializable behaviors in four data store benchmarks, and that more than 99% of its predicted executions are feasible.

     
    more » « less
    Free, publicly-accessible full text available June 20, 2025
  6. Free, publicly-accessible full text available June 1, 2025
  7. Electronic cigarettes (ECs) emit many toxic substances, including metals, that can pose a threat to users and the environment. The toxicity of the emitted metals depends on their oxidation states. Hence, this study examines the oxidation states of metals observed in EC aerosols. X-ray photoelectron spectroscopy analysis of the filters that collected EC aerosols identified the oxidation states of five primary metals (based on surface sample analysis), including chromium(III) (close to 100%) under low power setting while a noticeable amount of chromium(VI) (15%) at higher power settings of the EC, and copper(II) (100%), zinc(II) (100%), nickel(II) (100%), lead(II) (65%), and lead(IV) (35%) regardless of power settings. This observation indicates that the increased temperature due to higher power settings could alter the oxidation states of certain metals. We noted that many metals were in their lesser toxic states; however, inhaling these metals may still pose health risks. 
    more » « less
    Free, publicly-accessible full text available July 15, 2025
  8. Abstract

    Borophenes have sparked considerable interest owing to their fascinating physical characteristics and diverse polymorphism. However, borophene nanoribbons (BNRs) with widths less than 2 nm have not been achieved. Herein, we report the experimental realization of supernarrow BNRs. Combining scanning tunneling microscopy imaging with density functional theory modeling and ab initio molecular dynamics simulations, we demonstrate that, under the applied growth conditions, boron atoms can penetrate the outermost layer of Au(111) and form BNRs composed of a pair of zigzag (2,2) boron rows. The BNRs have a width self‐contained to ∼1 nm and dipoles at the edges to keep them separated. They are embedded in the outermost Au layer and shielded on top by the evacuated Au atoms, free of the need for post‐passivation. Scanning tunneling spectroscopy reveals distinct edge states, primarily attributed to the localized spin at the BNRs’ zigzag edges. This work adds a new member to the boron material family and introduces a new physical feature to borophenes.

     
    more » « less
    Free, publicly-accessible full text available July 8, 2025
  9. Abstract

    The active-particle number density is a key parameter for plasma material processing, space propulsion, and plasma-assisted combustion. The traditional actinometry method focuses on measuring the density of the atoms in the ground state, but there is a lack of an effective optical emission spectroscopy method to measure intra-shell excited-state densities. The latter atoms have chemical selectivity and higher energy, and they can easily change the material morphology as well as the ionization and combustion paths. In this work, we present a novel state-resolved actinometry (SRA) method, supported by a krypton line-ratio method for the electron temperature and density, to measure the number densities of nitrogen atoms in the ground and intra-shell excited states. The SRA method is based on a collisional-radiative model, considering the kinetics of atomic nitrogen and krypton including their excited states. The densities measured by our method are compared with those obtained from a dissociative model in a miniature electron cyclotron resonance (ECR) plasma source. Furthermore, the saturation effect, in which the electron density remains constant due to the microwave propagation in an ECR plasma once the power reaches a certain value, is used to verify the electron density measured by the line-ratio method. An ionization balance model is also presented to examine the measured electron temperature. All the values obtained with the different methods are in good agreement with each other, and hence a set of verified rate coefficient data used in our method can be provided. A novel concept, the ‘excited-state system’, is presented to quickly build an optical diagnostic method based on the analysis of quantum number propensity and selection rules.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025