skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Searches for gravitational waves from compact binary mergers, which to date have reported ∼100 observations, have previously ignored binaries whose components are consistent with the mass of neutron stars (1–2 M⊙) and have high dimensionless spin >0.05. While previous searches targeted sources that are representative of observed neutron star binaries in the Galaxy, it is already known that neutron stars can regularly be spun up to a dimensionless spin of ∼0.4, and in principle reach up to ∼0.7 before breakup would occur. Furthermore, there may be primordial black hole binaries or exotic formation mechanisms to produce light black holes. In these cases, it is possible for the binary constituent to be spun up beyond that achievable by a neutron star. A single detection of this type of source would reveal a novel formation channel for compact binaries. To determine whether there is evidence for any such sources, we use pycbc to conduct a targeted search of LIGO and Virgo data for light compact objects with high spin. Our analysis detects previously known observations GW170817 and GW200115; however, we report no additional mergers. The most significant candidate, not previously known, is consistent with the noise distribution, and so we constrain the merger rate of spinning light binaries.

     
    more » « less
  2. Addition of halide salts as co-supporting electrolytes is a simple electrolyte tailoring strategy for enabling Al sacrificial anodes in THF-based electrolytes.

     
    more » « less
    Free, publicly-accessible full text available November 2, 2024
  3. Free, publicly-accessible full text available October 6, 2024
  4. Cu is an inexpensive alternative plasmonic metal with optical behaviour comparable to Au but with much poorer environmental stability. Alloying with a more stable metal can improve stability and add functionality, with potential effects on the plasmonic properties. Here we investigate the plasmonic behaviour of Cu nanorods and Cu–CuPd nanorods containing up to 46 mass percent Pd. Monochromated scanning transmission electron microscopy electron energy-loss spectroscopy first reveals the strong length dependence of multiple plasmonic modes in Cu nanorods, where the plasmon peaks redshift and narrow with increasing length. Next, we observe an increased damping (and increased linewidth) with increasing Pd content, accompanied by minimal frequency shift. These results are corroborated by and expanded upon with numerical simulations using the electron-driven discrete dipole approximation. This study indicates that adding Pd to nanostructures of Cu is a promising method to expand the scope of their plasmonic applications. 
    more » « less
    Free, publicly-accessible full text available October 24, 2024
  5. Limited data exist on how surface charge and morphology impact the effectiveness of nanoscale copper oxide (CuO) as an agricultural amendment under field conditions. This study investigated the impact of these factors on tomatoes and watermelons following foliar treatment with CuO nanosheets (NS-) or nanospikes (NP+ and NP-) exhibiting positive or negative surface charge. Results showed plant species-dependent benefits. Notably, tomatoes infected with Fusarium oxysporum had significantly reduced disease progression when treated with NS-. Watermelons benefited similarly from NP+. Although disease suppression was significant and trends indicated increased yield, the yield effects weren't statistically significant. However, several nanoscale treatments significantly enhanced the fruit's nutritional value, and this nano-enabled biofortification was a function of particle charge and morphology. Negatively charged nanospikes significantly increased the Fe content of healthy watermelon and tomato (20–28 %) and Ca in healthy tomato (66 %), compared to their positively charged counterpart. Negatively charged nanospikes also outperformed negatively charged nanosheets, leading to significant increases in the content of S and Mg in infected watermelon (37–38 %), Fe in healthy watermelon (58 %), and Ca (42 %) in healthy tomato. These findings highlight the potential of tuning nanoscale CuO chemistry for disease suppression and enhanced food quality under field conditions. 
    more » « less
    Free, publicly-accessible full text available December 20, 2024
  6. Free, publicly-accessible full text available December 1, 2024
  7. Free, publicly-accessible full text available May 1, 2024
  8. Seed-mediated synthesis is a versatile method to prepare multimetallic nanocrystals for diverse applications. However, many fundamental questions remain on how the structural and chemical properties of nanocrystal seeds control the reaction pathways, especially for nonaqueous synthesis at elevated temperatures. Herein, we elucidate the role of surface ligands and crystallinity of Au nanocrystal seeds on the heterometallic seeded growth of Cu-based nanocrystals. We found that weakly coordinating ligands are critical to facilitate the diffusion between Au and Cu, which enables subsequent one-dimensional growth of Cu. Replacing multiple-twinned Au seeds with single-crystalline ones switched the growth pathway to produce heterostructured nanocrystals. Our work illustrates the importance of precise control of seed characteristics for the predictive synthesis of structurally complex multimetallic nanocrystals. 
    more » « less
    Free, publicly-accessible full text available May 15, 2024
  9. Free, publicly-accessible full text available June 1, 2024
  10. Free, publicly-accessible full text available July 1, 2024