- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
05000000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Yijue (5)
-
Ding, Caiwen (4)
-
Rajasekaran, Sanguthevar (4)
-
Wang, Chenghong (3)
-
Deng, Jieren (2)
-
Li, Ji (2)
-
Liu, Hang (2)
-
Backes, Michael (1)
-
Bansal, Mohit (1)
-
Bi, Jinbo (1)
-
Cao, Yinzhi (1)
-
Chang, Kai-Wei (1)
-
Chen, Pin-Yu (1)
-
Chen, Tianlong (1)
-
Chen, Xun (1)
-
Chen, Yong (1)
-
Gao, Chujie (1)
-
Gao, Jianfeng (1)
-
Gong, Neil_Zhenqiang (1)
-
Gu, Quanquan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Huang, Yue ; Sun, Lichao ; Wang, Haoran ; Wu, Siyuan ; Zhang, Qihui ; Li, Yuan ; Gao, Chujie ; Huang, Yixin ; Lyu, Wenhan ; Zhang, Yixuan ; et al ( , PMLR)Free, publicly-accessible full text available July 29, 2025
-
Wang, Yijue ; Wang, Chenghong ; Wang, Zigeng ; Zhou, Shanglin ; Liu, Hang ; Bi, Jinbo ; Ding, Caiwen ; Rajasekaran, Sanguthevar ( , International Joint Conference on Artificial Intelligence)
The large model size, high computational operations, and vulnerability against membership inference attack (MIA) have impeded deep learning or deep neural networks (DNNs) popularity, especially on mobile devices. To address the challenge, we envision that the weight pruning technique will help DNNs against MIA while reducing model storage and computational operation. In this work, we propose a pruning algorithm, and we show that the proposed algorithm can find a subnetwork that can prevent privacy leakage from MIA and achieves competitive accuracy with the original DNNs. We also verify our theoretical insights with experiments. Our experimental results illustrate that the attack accuracy using model compression is up to 13.6% and 10% lower than that of the baseline and Min-Max game, accordingly.
-
Deng, Jieren ; Wang, Yijue ; Li, Ji ; Wang, Chenghong ; Shang, Chao ; Liu, Hang ; Rajasekaran, Sanguthevar ; Ding, Caiwen ( , The 2021 Conference on Empirical Methods in Natural Language Processing)
-
Wang, Chenghong ; Deng, Jieren ; Meng, Xianrui ; Wang, Yijue ; Li, Ji ; Lin, Sheng ; Han, Shuo ; Miao, Fei ; Rajasekaran, Sanguthevar ; Ding, Caiwen ( , EMNLP)