skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yongfu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cell lines have become an integral resource and tool for conducting biological experiments ever since the Hela cell line was first developed (Scherer et al. in J Exp Med 97:695–710, 1953). They not only allow detailed investigation of molecular pathways but are faster and more cost-effective than most in vivo approaches. The last decade saw many emerging model systems strengthening basic science research. However, lack of genetic and molecular tools in these newer systems pose many obstacles.Astyanax mexicanusis proving to be an interesting new model system for understanding metabolic adaptation. To further enhance the utility of this system, we developed liver-derived cell lines from both surface-dwelling and cave-dwelling morphotypes. In this study, we provide detailed methodology of the derivation process along with comprehensive biochemical and molecular characterization of the cell lines, which reflect key metabolic traits of cavefish adaptation. We anticipate these cell lines to become a useful resource for theAstyanaxcommunity as well as researchers investigating fish biology, comparative physiology, and metabolism. 
    more » « less
  2. Reduced parasitic infection rates in the developed world are suspected to underlie the rising prevalence of autoimmune disorders. However, the long-term evolutionary consequences of decreased parasite exposure on an immune system are not well understood. We used the Mexican tetra Astyanax mexicanus to understand how loss of parasite diversity influences the evolutionary trajectory of the vertebrate immune system, by comparing river with cave morphotypes. Here, we present field data affirming a strong reduction in parasite diversity in the cave ecosystem, and show that cavefish immune cells display a more sensitive pro-inflammatory response towards bacterial endotoxins. Surprisingly, other innate cellular immune responses, such as phagocytosis, are drastically decreased in cavefish. Using two independent single-cell approaches, we identified a shift in the overall immune cell composition in cavefish as the underlying cellular mechanism, indicating strong differences in the immune investment strategy. While surface fish invest evenly into the innate and adaptive immune systems, cavefish shifted immune investment to the adaptive immune system, and here, mainly towards specific T-cell populations that promote homeostasis. Additionally, inflammatory responses and immunopathological phenotypes in visceral adipose tissue are drastically reduced in cavefish. Our data indicate that long-term adaptation to low parasite diversity coincides with a more sensitive immune system in cavefish, which is accompanied by a reduction in the immune cells that play a role in mediating the pro-inflammatory response. 
    more » « less