skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Wang, YuHuang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Strategically introduced defects can be used to modify carbon nanotubes for new properties and functions. For example, chemical defects can act as atomic traps for electrons, holes, electron-hole pairs, and even molecules and ions ( 1 ). The ability to control the placement of these defects on carbon nanotubes could enable a plethora of fundamental studies and potential applications in imaging, sensing, disease diagnostics, and quantum information science ( 2 – 4 ). However, there is yet no effective way to do this with atomic precision ( 5 – 7 ). On page 535 of this issue, Lin et al. ( 8 ) report the creation of ordered defect arrays by programming DNA strands to wrap around and traverse the entire length of a single-walled carbon nanotube. 
    more » « less
  2. Free, publicly-accessible full text available November 22, 2023
  3. Abstract We use time-dependent density functional theory to investigate the possibility of hosting organic color centers in (6, 6) armchair single-walled carbon nanotubes, which are known to be metallic. Our calculations show that in short segments of (6, 6) nanotubes ∼ 5 nm in length there is a dipole-allowed singlet transition related to the quantum confinement of charge carriers in the smaller segments. The introduction of s p 3 defects to the surface of (6, 6) nanotubes results in new dipole-allowed excited states. Some of these states are redshifted from the native confinement state of the defect-free (6, 6) segments; this is similar behavior to what is observed with s p 3 defects to exciton transitions in semiconducting carbon nanotubes. This result suggests the possibility of electrically wiring organic color centers directly through armchair carbon nanotube hosts. 
    more » « less
  4. Abstract Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction. Functionalization is directly verified by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show strong diameter-dependent emission, which can be explained with a model for chemical reactivity considering strain along the tube curvature. We also estimate the defect density by comparing the experiments with simulations based on a one-dimensional exciton diffusion equation. Our results highlight the influence of the nanotube structure on vapor-phase reactivity and emission properties, providing guidelines for the development of high-performance near-infrared quantum light sources. 
    more » « less
    Free, publicly-accessible full text available December 1, 2023
  5. null (Ed.)