skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yuhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Water vapor condensation on hygroscopic aerosol particles plays an important role in cloud formation, climate change, secondary aerosol formation, and aerosol aging. Conventional understanding considers deliquescence of nanosized hygroscopic aerosol particles a nearly instantaneous solid to liquid phase transition. However, the nanoscale dynamics of water condensation and aerosol particle dissolution prior to and during deliquescence remain obscure due to a lack of high spatial and temporal resolution single particle measurements. Here we use real time in situ transmission electron microscopy (TEM) imaging of individual sodium chloride (NaCl) nanoparticles to demonstrate that water adsorption and aerosol particle dissolution prior to and during deliquescence is a multistep dynamic process. Water condensation and aerosol particle dissolution was investigated for lab generated NaCl aerosols and found to occur in three distinct stages as a function of increasing RH. First, a < 100 nm water layer adsorbed on the NaCl cubes and caused sharp corners to dissolve and truncate. The water layer grew to several hundred nanometers with increasing RH and was rapidly saturated with solute, as evidenced by halting of particle dissolution. Adjacent cube corners displayed second-scale curvature fluctuations with no net particle dissolution or water layer thickness change. We propose that droplet solute concentration fluctuations drove NaCl transport from regions of high local curvature to regions of low curvature. Finally, we observed coexistence of a liquid water droplet and aerosol particle immediately prior to deliquescence. Particles dissolved discretely along single crystallographic directions, separating by few second lag times with no dissolution. This work demonstrates that deliquescence of simple pure salt particles with sizes in the range of 100 nm to several microns is not an instantaneous phase transition and instead involves a range of complex dissolution and water condensation dynamics.

     
    more » « less
    Free, publicly-accessible full text available June 28, 2025
  2. Caulobacter crescentusTad (tight adherence) pili, part of the type IV pili family, are crucial for mechanosensing, surface adherence, bacteriophage (phage) adsorption, and cell-cycle regulation. Unlike other type IV pilins, Tad pilins lack the typical globular β sheet domain responsible for pilus assembly and phage binding. The mechanisms of Tad pilus assembly and its interaction with phage ΦCb5 have been elusive. Using cryo–electron microscopy, we unveiled the Tad pilus assembly mechanism, featuring a unique network of hydrogen bonds at its core. We then identified the Tad pilus binding to the ΦCb5 maturation protein (Mat) through its β region. Notably, the amino terminus of ΦCb5 Mat is exposed outside the capsid and phage/pilus interface, enabling the attachment of fluorescent and affinity tags. These engineered ΦCb5 virions can be efficiently assembled and purified inEscherichia coli, maintaining infectivity againstC. crescentus, which presents promising applications, including RNA delivery and phage display.

     
    more » « less
    Free, publicly-accessible full text available May 3, 2025
  3. Free, publicly-accessible full text available April 1, 2025
  4. Abstract

    To understand diurnal variations in PM2.5composition and aerosol extract absorption, PM2.5samples were collected at intervals of 2 hr from 8:00 to 20:00 and 6 hr from 20:00 to 8:00 (the next day) in northern Nanjing, China, during the winter and summer of 2019–2020 and analyzed for bulk components, organic tracers, and light absorption of water and methanol extracts—a proxy measure of brown carbon (BrC). Diurnal patterns of measured species reflected the influences of primary emissions and atmospheric processes. Light absorption coefficients of water (Abs365,w) and methanol extracts (Abs365,m) at 365 nm shared a similar diurnal profile peaking at 18:00–20:00, generally following changes in biomass burning tracers. However, Abs365,w, Abs365,m, and their normalizations to organic aerosols increased at 14:00–16:00, earlier than that of levoglucosan in the late afternoon, which was attributed to secondarily formed BrC. The methanol extracts showed a less drastic decrease in light absorption at night than the water extracts and elevated absorption efficiency during 2:00–8:00. This is due to the fact that the water‐insoluble OC has a longer lifetime and stronger light absorption than the water‐soluble OC. According to the source apportionment results solved by positive matrix factorization (PMF), biomass burning and secondary formation were the major BrC sources in northern Nanjing, with an average total relative contribution of about 90%. Compared to previous studies, diurnal source cycles were added to the PMF simulations in this work by using time‐resolved speciation data, which avoided misclassification of BrC sources.

     
    more » « less
  5. Abstract

    Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction betweenAcinetobacterphage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the nativeAcinetobactertype IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.

     
    more » « less
  6. Abstract A catastrophic heatwave struck North America (NA) in the summer of 2021, the underlying cause of which currently remains unclear. The reanalysis data (1980–2021) is analyzed to elucidate the mechanism modulating the summer heatwaves. We find the heatwaves over western NA tend to occur concurrently with quasi-barotropic ridges (QBTRs). The 2021 record-breaking heatwave, in particular, coincides with an extended eight-day QBTR event. The frequency of QBTRs is modulated by large-scale forcing. During the period of 1980–2000, it is correlated with the Arctic Oscillation. After 2000, however, the QBTR frequency is highly associated with sea ice variations. Specifically, the negative sea ice anomalies in the Chukchi Sea are usually associated with stronger net surface shortwave radiation and low cloud cover, triggering upward motion and a low-pressure center in the low- and mid-troposphere. The low pressure strengthens a stationary wave response, concomitant with two alternately high- and low-pressure centers, inducing more frequent QBTRs over western NA. These findings indicate that further Arctic sea ice loss under a warming climate will likely lead to more devastating heatwaves over western NA. 
    more » « less
  7. Abstract Background The spatiotemporal variation of observed trace gases (NO 2 , SO 2 , O 3 ) and particulate matter (PM 2.5 , PM 10 ) were investigated over cities of Yangtze River Delta (YRD) region including Nanjing, Hefei, Shanghai and Hangzhou. Furthermore, the characteristics of different pollution episodes, i.e., haze events (visibility < 7 km, relative humidity < 80%, and PM 2.5  > 40 µg/m 3 ) and complex pollution episodes (PM 2.5  > 35 µg/m 3 and O 3  > 160 µg/m 3 ) were studied over the cities of the YRD region. The impact of China clean air action plan on concentration of aerosols and trace gases is examined. The impacts of trans-boundary pollution and different meteorological conditions were also examined. Results The highest annual mean concentrations of PM 2.5 , PM 10 , NO 2 and O 3 were found for 2019 over all the cities. The annual mean concentrations of PM 2.5 , PM 10 , and NO 2 showed continuous declines from 2019 to 2021 due to emission control measures and implementation of the Clean Air Action plan over all the cities of the YRD region. The annual mean O 3 levels showed a decline in 2020 over all the cities of YRD region, which is unprecedented since the beginning of the China’s National environmental monitoring program since 2013. However, a slight increase in annual O 3 was observed in 2021. The highest overall means of PM 2.5 , PM 10 , SO 2 , and NO 2 were observed over Hefei, whereas the highest O 3 levels were found in Nanjing. Despite the strict control measures, PM 2.5 and PM 10 concentrations exceeded the Grade-1 National Ambient Air Quality Standards (NAAQS) and WHO (World Health Organization) guidelines over all the cities of the YRD region. The number of haze days was higher in Hefei and Nanjing, whereas the complex pollution episodes or concurrent occurrence of O 3 and PM 2.5 pollution days were higher in Hangzhou and Shanghai. The in situ data for SO 2 and NO 2 showed strong correlation with Tropospheric Monitoring Instrument (TROPOMI) satellite data. Conclusions Despite the observed reductions in primary pollutants concentrations, the secondary pollutants formation is still a concern for major metropolises. The increase in temperature and lower relative humidity favors the accumulation of O 3 , while low temperature, low wind speeds and lower relative humidity favor the accumulation of primary pollutants. This study depicts different air pollution problems for different cities inside a region. Therefore, there is a dire need to continuous monitoring and analysis of air quality parameters and design city-specific policies and action plans to effectively deal with the metropolitan pollution. 
    more » « less