skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Wang, Zhongkai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Biomass-based polymers show promise for the mitigation of environmental issues associated with petroleum-derived commodity polymers; however, due to poor entanglement, many of these polymers typically lack mechanical strength and toughness. Herein, we report a facile approach to utilizing metal–ligand coordination to create physical crosslinking, and thus chain entanglements for plant oil-derived polymers. A series of soybean oil-derived copolymers containing a pendant acid group can be easily synthesized using free radical polymerization. The resulting chain architecture can be controlled through supramolecular interactions to produce bioplastics with enhanced thermomechanical properties. The metal–ligand coordination in this work can be varied by changing the metal lability and the density of metal–ligand bonds, allowing for further control of properties. The final bioplastics remain reprocessable and feature good thermoplastic and stimuli-responsive properties. 
    more » « less
  3. The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants. 
    more » « less