Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Accurate air pollution monitoring is critical to understand and mitigate the impacts of air pollution on human health and ecosystems. Due to the limited number and geographical coverage of advanced, highly accurate sensors monitoring air pollutants, many low-cost and low-accuracy sensors have been deployed. Calibrating low-cost sensors is essential to fill the geographical gap in sensor coverage. We systematically examined how different machine learning (ML) models and open-source packages could help improve the accuracy of particulate matter (PM) 2.5 data collected by Purple Air sensors. Eleven ML models and five packages were examined. This systematic study found that both models and packages impacted accuracy, while the random training/testing split ratio (e.g., 80/20 vs. 70/30) had minimal impact (0.745% difference for R2). Long Short-Term Memory (LSTM) models trained in RStudio and TensorFlow excelled, with high R2 scores of 0.856 and 0.857 and low Root Mean Squared Errors (RMSEs) of 4.25 µg/m3 and 4.26 µg/m3, respectively. However, LSTM models may be too slow (1.5 h) or computation-intensive for applications with fast response requirements. Tree-boosted models including XGBoost (0.7612, 5.377 µg/m3) in RStudio and Random Forest (RF) (0.7632, 5.366 µg/m3) in TensorFlow offered good performance with shorter training times (<1 min) and may be suitable for such applications. These findings suggest that AI/ML models, particularly LSTM models, can effectively calibrate low-cost sensors to produce precise, localized air quality data. This research is among the most comprehensive studies on AI/ML for air pollutant calibration. We also discussed limitations, applicability to other sensors, and the explanations for good model performances. This research can be adapted to enhance air quality monitoring for public health risk assessments, support broader environmental health initiatives, and inform policy decisions.more » « lessFree, publicly-accessible full text available February 1, 2026
-
The COVID-19 pandemic has been sweeping across the United States of America since early 2020. The whole world was waiting for vaccination to end this pandemic. Since the approval of the first vaccine by the U.S. CDC on 9 November 2020, nearly 67.5% of the US population have been fully vaccinated by 10 July 2022. While quite successful in controlling the spreading of COVID-19, there were voices against vaccines. Therefore, this research utilizes geo-tweets and Bayesian-based method to investigate public opinions towards vaccines based on (1) the spatiotemporal changes in public engagement and public sentiment; (2) how the public engagement and sentiment react to different vaccine-related topics; (3) how various races behave differently. We connected the phenomenon observed to real-time and historical events. We found that in general the public is positive towards COVID-19 vaccines. Public sentiment positivity went up as more people were vaccinated. Public sentiment on specific topics varied in different periods. African Americans’ sentiment toward vaccines was relatively lower than other races.more » « less
-
null (Ed.)The outbreak of COVID-19 from late 2019 not only threatens the health and lives of humankind but impacts public policies, economic activities, and human behavior patterns significantly. To understand the impact and better prepare for future outbreaks, socioeconomic factors play significant roles in (1) determinant analysis with health care, environmental exposure and health behavior; (2) human mobility analyses driven by policies; (3) economic pressure and recovery analyses for decision making; and (4) short to long term social impact analysis for equity, justice and diversity. To support these analyses for rapid impact responses, state level socioeconomic factors for the United States of America (USA) are collected and integrated into topic-based indicators, including (1) the daily quantitative policy stringency index; (2) dynamic economic indices with multiple time frequency of GDP, international trade, personal income, employment, the housing market, and others; (3) the socioeconomic determinant baseline of the demographic, housing financial situation and medical resources. This paper introduces the measurements and metadata of relevant socioeconomic data collection, along with the sharing platform, data warehouse framework and quality control strategies. Different from existing COVID-19 related data products, this collection recognized the geospatial and dynamic factor as essential dimensions of epidemiologic research and scaled down the spatial resolution of socioeconomic data collection from country level to state level of the USA with a standard data format and high quality.more » « less
-
null (Ed.)The COVID-19 viral disease surfaced at the end of 2019 and quickly spread across the globe. To rapidly respond to this pandemic and offer data support for various communities (e.g., decision-makers in health departments and governments, researchers in academia, public citizens), the National Science Foundation (NSF) spatiotemporal innovation center constructed a spatiotemporal platform with various task forces including international researchers and implementation strategies. Compared to similar platforms that only offer viral and health data, this platform views virus-related environmental data collection (EDC) an important component for the geospatial analysis of the pandemic. The EDC contains environmental factors either proven or with potential to influence the spread of COVID-19 and virulence or influence the impact of the pandemic on human health (e.g., temperature, humidity, precipitation, air quality index and pollutants, nighttime light (NTL)). In this platform/framework, environmental data are processed and organized across multiple spatiotemporal scales for a variety of applications (e.g., global mapping of daily temperature, humidity, precipitation, correlation of the pandemic to the mean values of climate and weather factors by city). This paper introduces the raw input data, construction and metadata of reprocessed data, and data storage, as well as the sharing and quality control methodologies of the COVID-19 related environmental data collection.more » « less