skip to main content

Search for: All records

Creators/Authors contains: "Wang, Ziheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. In the mean field integrate-and-fire model, the dynamics of a typical neuronwithin a large network is modeled as a diffusion-jump stochastic process whosejump takes place once the voltage reaches a threshold. In this work, the maingoal is to establish the convergence relationship between the regularizedprocess and the original one where in the regularized process, the jumpmechanism is replaced by a Poisson dynamic, and jump intensity within theclassically forbidden domain goes to infinity as the regularization parametervanishes. On the macroscopic level, the Fokker-Planck equation for the processwith random discharges (i.e. Poisson jumps) are defined on the whole space,while the equation for the limit process is on the half space. However, withthe iteration scheme, the difficulty due to the domain differences has beengreatly mitigated and the convergence for the stochastic process and the firingrates can be established. Moreover, we find a polynomial-order convergence forthe distribution by a re-normalization argument in probability theory. Finally,by numerical experiments, we quantitatively explore the rate and the asymptoticbehavior of the convergence for both linear and nonlinear models. 
    more » « less