skip to main content


Search for: All records

Creators/Authors contains: "Ward, Lauren A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The 2019 Ridgecrest conjugate Mw6.4 and Mw7.1 events resulted in several meters of strike‐slip and dip‐slip along an intricate rupture, extending from the surface down to 15 km. Now with >2 years of post‐rupture observations, we utilize these results to better understand vertical postseismic deformation from the Ridgecrest sequence and illuminate the emerging significance of vertical earthquake cycle deformation data. We determine the cumulative vertical displacement observed by the continuous GNSS network since Ridgecrest, which requires additional time series analyses to adequately resolve vertical deformation compared to the horizontal. Using a Maxwell‐type viscoelastic relaxation model, with a best fit time‐averaged asthenosphere viscosity of 4e17 Pa·s and a laterally heterogeneous lithosphere, we find that viscoelastic relaxation accounts for a majority of the cumulative vertical deformation at Ridgecrest and strongly controls far‐field observations in all north‐east‐up components. The viscoelastic model alone generally underpredicts deformation from GNSS and the remaining nonviscoelastic displacement is most prominent in the horizontal near‐field (−16 to 19 mm), revealing a deformation pattern matching the coseismic observations. This suggests that multiple deformation mechanisms are contributing to Ridgecrest's postseismic displacement, where afterslip likely dominates the near‐field while viscoelastic relaxation controls the far‐field. Similar deformation at individual GNSS stations has been observed for past earthquakes and additionally reveals long‐term transient viscosity over several years. Moreover, the greater temporal and spatial resolution of the GNSS array for Ridgecrest will help resolve the evolution of deformation for the entire network of observations as regional postseismic deformation persists for the next several years.

     
    more » « less
  2. Abstract

    Rheologic variations in the Earth's crust (like elastic plate thickness [EPT] or crustal rigidity) modulate the rate at which seismic moment accumulates for potentially hazardous faults of the San Andreas Fault System (SAFS). To quantify rates of seismic moment accumulation, Global Navigation Satellite Systems, and Interferometric Synthetic Aperture Radar data were used to constrain surface deformation rates of a four‐dimensional viscoelastic deformation model that incorporates rheological variations spanning a 900 km section of the SAFS. Lateral variations in EPT, estimated from surface heat flow and seismic depth to the lithosphere‐asthenosphere boundary, were converted to lateral variations in rigidity and then used to solve for seismic moment accumulation rates on 32 fault segments. We find a cluster of elevated seismic moment rates (11–20 × 1015 Nm year−1km−1) along the main SAFS trace spanning the historicalMw7.9 1857 Fort Tejon earthquake rupture length; present‐day seismic moment magnitude on these segments ranges fromMw7.2–7.6. We also find that the average plate thickness in the Salton Trough is reduced to only 60% of the regional average, which results in a ∼60% decrease in moment accumulation rate along the Imperial fault. Likewise, a 30% increase of average plate thickness results in at least a ∼30% increase in moment rate and even larger increases are identified in regions of complex plate heterogeneity. These results emphasize the importance of considering rheological variations when estimating seismic hazard, suggesting that meaningful changes in seismic moment accumulation are revealed when considering spatial variations in crustal rheology.

     
    more » « less
  3. Abstract

    Fe‐ and Mn‐oxides are common secondary minerals in faults, fractures, and veins and potentially record information about the timing of fluid movement through their host rocks. These phases are difficult to date by most radioisotopic techniques, but relatively high concentrations of U and Th make the (U‐Th)/He system a promising approach. We present new petrographic, geochronologic and thermochronologic analyses of secondary oxides and associated minerals from fault zones and fractures in southeastern Arizona. We use these phases in attempt to constrain the timing of fluid flow and their relationship to magmatic, tectonic, or other regional processes. In the shallowly exhumed Galiuro Mountains, Fe‐oxide (U‐Th)/He dates correspond to host‐rock crystallization and magmatic intrusions from ca. 1.6 to 1.1 Ga. Step‐heating4He/3He experiments and polydomain diffusion modeling of3He release spectra on these samples are consistent with a crystallite size control on He diffusivity, and little fractional loss of radiogenic He since formation in coarse‐grained hematite, but large losses from fine‐grained Mn‐oxide. In contrast to Proterozoic dates, Fe‐ and Mn‐oxides from the Catalina‐Rincon and Pinaleño metamorphic core complexes are exclusively Cenozoic, with dates clustering at ca. 24, 15, and 9 Ma, which represent distinct cooling or fluid‐flow episodes during punctuated periods of normal faulting. Finally, a subset of Fe‐oxides yield dates of ca. 5 Ma to 6 ka and display either pseudomorphic cubic forms consistent with oxidative retrogression of original pyrite or magnetite, or fine‐grained botryoidal morphologies that we interpret to represent approximate ages of recrystallization or pseudomorphic replacement at shallow depths.

     
    more » « less
  4. Contemporary earthquake hazard models hinge on an understanding of how strain is distributed in the crust and the ability to precisely detect millimeter-scale deformation over broad regions of active faulting. Satellite radar observations revealed hundreds of previously unmapped linear strain concentrations (or fractures) surrounding the 2019 Ridgecrest earthquake sequence. We documented and analyzed displacements and widths of 169 of these fractures. Although most fractures are displaced in the direction of the prevailing tectonic stress (prograde), a large number of them are displaced in the opposite (retrograde) direction. We developed a model to explain the existence and behavior of these displacements. A major implication is that much of the prograde tectonic strain is accommodated by frictional slip on many preexisting faults.

     
    more » « less