skip to main content

Search for: All records

Creators/Authors contains: "Ward, Nicole K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lake ecosystems, as integrators of watershed and climate stressors, are sentinels of change. However, there is an inherent time-lag between stressors and whole-lake response. Aquatic metabolism, including gross primary production (GPP) and respiration (R), of stream–lake transitional zones may bridge the time-lag of lake response to allochthonous inputs. In this study, we used high-frequency dissolved oxygen data and inverse modeling to estimate daily rates of summer epilimnetic GPP and R in a nutrient-limited oligotrophic lake at two littoral sites located near different major inflows and at a pelagic site. We examined the relative importance of stream variables in comparison to meteorological and in-lake predictors of GPP and R. One of the inflow streams was substantially warmer than the other and primarily entered the lake’s epilimnion, whereas the colder stream primarily mixed into the metalimnion or hypolimnion. Maximum GPP and R rates were 0.2–2.5 mg O 2 L −1  day −1 (9–670%) higher at littoral sites than the pelagic site. Ensemble machine learning analyses revealed that > 30% of variability in daily littoral zone GPP and R was attributable to stream depth and stream–lake transitional zone mixing metrics. The warm-stream inflow likely stimulated littoral GPP and R, while the cold-stream inflow only stimulatedmore »littoral zone GPP and R when mixing with the epilimnion. The higher GPP and R observed near inflows in our study may provide a sentinel-of-the-sentinel signal, bridging the time-lag between stream inputs and in-lake processing, enabling an earlier indication of whole-lake response to upstream stressors.« less
    Free, publicly-accessible full text available July 1, 2023
  2. Abstract. Empirical evidence demonstrates that lakes and reservoirs are warming acrossthe globe. Consequently, there is an increased need to project futurechanges in lake thermal structure and resulting changes in lakebiogeochemistry in order to plan for the likely impacts. Previous studies ofthe impacts of climate change on lakes have often relied on a single modelforced with limited scenario-driven projections of future climate for arelatively small number of lakes. As a result, our understanding of theeffects of climate change on lakes is fragmentary, based on scatteredstudies using different data sources and modelling protocols, and mainlyfocused on individual lakes or lake regions. This has precludedidentification of the main impacts of climate change on lakes at global andregional scales and has likely contributed to the lack of lake water qualityconsiderations in policy-relevant documents, such as the Assessment Reportsof the Intergovernmental Panel on Climate Change (IPCC). Here, we describe asimulation protocol developed by the Lake Sector of the Inter-SectoralImpact Model Intercomparison Project (ISIMIP) for simulating climate changeimpacts on lakes using an ensemble of lake models and climate changescenarios for ISIMIP phases 2 and 3. The protocol prescribes lakesimulations driven by climate forcing from gridded observations anddifferent Earth system models under various representative greenhouse gasconcentration pathwaysmore »(RCPs), all consistently bias-corrected on a0.5∘ × 0.5∘ global grid. In ISIMIP phase 2, 11 lakemodels were forced with these data to project the thermal structure of 62well-studied lakes where data were available for calibration underhistorical conditions, and using uncalibrated models for 17 500 lakesdefined for all global grid cells containing lakes. In ISIMIP phase 3, thisapproach was expanded to consider more lakes, more models, and moreprocesses. The ISIMIP Lake Sector is the largest international effort toproject future water temperature, thermal structure, and ice phenology oflakes at local and global scales and paves the way for future simulations ofthe impacts of climate change on water quality and biogeochemistry in lakes.« less