skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Wares, John P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species,Asterias rubensandA. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome‐wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth;Asterias forbesidisplays a relatively narrow environmental niche while conversely,A. rubenshas a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.

    more » « less
  2. Sea star wasting (SSW) disease describes a condition affecting asteroids that resulted in significant Northeastern Pacific population decline following a mass mortality event in 2013. The etiology of SSW is unresolved. We hypothesized that SSW is a sequela of microbial organic matter remineralization near respiratory surfaces, one consequence of which may be limited O 2 availability at the animal-water interface. Microbial assemblages inhabiting tissues and at the asteroid-water interface bore signatures of copiotroph proliferation before SSW onset, followed by the appearance of putatively facultative and strictly anaerobic taxa at the time of lesion genesis and as animals died. SSW lesions were induced in Pisaster ochraceus by enrichment with a variety of organic matter (OM) sources. These results together illustrate that depleted O 2 conditions at the animal-water interface may be established by heterotrophic microbial activity in response to organic matter loading. SSW was also induced by modestly (∼39%) depleted O 2 conditions in aquaria, suggesting that small perturbations in dissolved O 2 may exacerbate the condition. SSW susceptibility between species was significantly and positively correlated with surface rugosity, a key determinant of diffusive boundary layer thickness. Tissues of SSW-affected individuals collected in 2013–2014 bore δ 15 N signatures reflecting anaerobic processes, which suggests that this phenomenon may have affected asteroids during mass mortality at the time. The impacts of enhanced microbial activity and subsequent O 2 diffusion limitation may be more pronounced under higher temperatures due to lower O 2 solubility, in more rugose asteroid species due to restricted hydrodynamic flow, and in larger specimens due to their lower surface area to volume ratios which affects diffusive respiratory potential. 
    more » « less
  3. Abstract Aim

    As within‐species genomic data have been shown useful in interpreting broader biogeographic trends, we analysed the mode of population genomic isolation involved in a well‐studied intertidal genomic cline to better understand the mechanisms maintaining it. These results were interpreted in the context of spatial variation in habitat use and availability as well as likely fitness consequences for hybridization between the two lineages.


    Pacific coast of North America.


    Arthropods (Class Maxillopoda, Order Sessilia, Family Balanidae;Balanus glandula).


    Genotype‐by‐sequencing approaches were used to generate single‐nucleotide polymorphism markers across sites sampled between southern Alaska and Southern California. Inference using standard population genomic methods, including analysis of population structure, inbreeding and linkage disequilibrium, was used to identify the steepest transitions across the largest number of loci examined. These data were put in the context of observed population density and habitat availability.


    We show that the majority of markers analysed show strong clinal transitions in a very narrow portion of the California coast. Patterns of linkage disequilibrium among markers, along with prior evidence of variation in reproductive potential by latitude and by mitochondrial lineage, suggest some reproductive isolation among the northern and southern lineages ofB. glandulathat are concordant with the drop in population density and habitat availability in central California.

    Main Conclusions

    A significant clinal transition in genomic diversity is stronger and more localized than previously recognized and exhibits statistical patterns suggesting that the lineages are reproductively and phenotypically distinct in ways that may be ecologically important. As this species has been used to infer process in coastal biogeography, further study of concordant patterns will be important for advancing our understanding of this region.

    more » « less
  4. Abstract

    Beginning in 2013, sea stars throughout the Eastern North Pacific were decimated by wasting disease, also known as “asteroid idiopathic wasting syndrome” (AIWS) due to its elusive aetiology. The geographic extent and taxonomic scale of AIWS meant events leading up to the outbreak were heterogeneous, multifaceted, and oftentimes unobserved; progression from morbidity to death was rapid, leaving few tell‐tale symptoms. Here, we take a forensic genomic approach to discover candidate genes that may help explain sea star wasting syndrome. We report the first genome and annotation forPisaster ochraceus, along with differential gene expression (DGE) analyses in four size classes, three tissue types, and in symptomatic and asymptomatic individuals. We integrate nucleotide polymorphisms associated with survivors of the wasting disease outbreak, DGE associated with temperature treatments inP. ochraceus, and DGE associated with wasting in another asteroidPycnopodia helianthoides. InP. ochraceus, we found DGE across all tissues, among size classes, and between asymptomatic and symptomatic individuals; the strongest wasting‐associated DGE signal was in pyloric caecum. We also found previously identified outlier loci co‐occur with differentially expressed genes. In cross‐species comparisons of symptomatic and asymptomatic individuals, consistent responses distinguish genes associated with invertebrate innate immunity and chemical defence, consistent with context‐dependent stress responses, defensive apoptosis, and tissue degradation. Our analyses thus highlight genomic constituents that may link suspected environmental drivers (elevated temperature) with intrinsic differences among individuals (age/size, alleles associated with susceptibility) that elicit organismal responses (e.g., coelomocyte proliferation) and manifest as sea star wasting mass mortality.

    more » « less
  5. In recent years, a massive mortality event has killed millions of sea stars, of many different species, along the Pacific coast of North America. This disease event, known as ‘sea star wasting disease’ (SSWD), is linked to viral infection. In one affected sea star (Pisaster ochraceus), previous work had identified that the elongation factor 1-αlocus (EF1A) harbored an intronic insertion allele that is lethal when homozygous yet appears to be maintained at moderate frequency in populations through increased fitness for heterozygotes. The environmental conditions supporting this increased fitness are unknown, but overdominance is often associated with disease. Here, we evaluate populations ofP. ochraceusto identify the relationship between SSWD and EF1A genotype. Our data suggest that there may be significantly decreased occurrence of SSWD in individuals that are heterozygous at this locus. These results suggest further studies are warranted to understand the functional relationship between diversity at EF1A and survival inP. ochraceus.

    more » « less
  6. Microsatellite markers remain an important tool for ecological and evolutionary research, but are unavailable for many non-model organisms. One such organism with rare ecological and evolutionary features is the epizoic barnacleChelonibia testudinaria(Linnaeus, 1758).Chelonibia testudinariaappears to be a host generalist, and has an unusual sexual system, androdioecy. Genetic studies on host specificity and mating behavior are impeded by the lack of fine-scale, highly variable markers, such as microsatellite markers. In the present study, we discovered thousands of new microsatellite loci from next-generation sequencing data, and characterized 12 loci thoroughly. We conclude that 11 of these loci will be useful markers in future ecological and evolutionary studies onC. testudinaria.

    more » « less