skip to main content

Search for: All records

Creators/Authors contains: "Warr, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The large volume of deep groundwater in the Precambrian crust has only recently been understood to be relatively hydrogeologically isolated from the rest of the hydrologic cycle. The paucity of permeability measurements in Precambrian crust below 1.3 km is a barrier to modeling fluid flow and solute transport in these low porosity and permeability deep environments. Whether permeability-depth relationships derived from measurements shallower than 1.3 km can be extended to greater depths in unclear. Similarly, application of a widely-used permeability-depth relationship from prograde metamorphic and geothermal systems to deep Precambrian rocks may not be appropriate. Here, we constrain permeabilities for Precambrian crust to depths of 3.3 km based on fluid residence times estimated from noble gas analyses. Our analysis shows no statistically significant relationship between permeability and depth where only samples below 1 km are considered, challenging previous assumptions of exponential decay. Additionally, we show that estimated permeabilities at depths >1 km are at least an order of magnitude lower than some previous estimates and possibly much lower. As a consequence, water and solute fluxes at these depths will be extremely limited, imposing important controls on elemental cycling, distribution of subsurface microbial life and connections with the near-surface water cycle.

    more » « less
  2. Abstract

    Investigations of abiotic and biotic contributions to dissolved organic carbon (DOC) are required to constrain microbial habitability in continental subsurface fluids. Here we investigate a large (101–283 mg C/L) DOC pool in an ancient (>1Ga), high temperature (45–55 °C), low biomass (102−104cells/mL), and deep (3.2 km) brine from an uranium-enriched South African gold mine. Excitation-emission matrices (EEMs), negative electrospray ionization (–ESI) 21 tesla Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and amino acid analyses suggest the brine DOC is primarily radiolytically oxidized kerogen-rich shales or reefs, methane and ethane, with trace amounts of C3–C6hydrocarbons and organic sulfides. δ2H and δ13C of C1–C3hydrocarbons are consistent with abiotic origins. These findings suggest water-rock processes control redox and C cycling, helping support a meagre, slow biosphere over geologic time. A radiolytic-driven, habitable brine may signal similar settings are good targets in the search for life beyond Earth.

    more » « less
  3. null (Ed.)
    Energy derived from water-rock interactions such as serpentinization and radiolysis, among others, can sustain microbial ecosystems deep within the continental crust, expanding the habitable biosphere kilometers below the earth’s surface. Here, we describe a viable microbial community including sulfate-reducing microorganisms from one such subsurface lithoautotrophic ecosystem hosted in fracture waters in the Canadian Shield, 2.4 km below the surface in the Kidd Creek Observatory in Timmins, Ontario. The ancient groundwater housed in fractures in this system was previously shown to be rich in abiotically produced hydrogen, sulfate, methane, and short-chain hydrocarbons. We have further investigated this system by collecting filtered water samples and deploying sterile in situ biosampler units into boreholes to provide an attachment surface for the actively growing fraction of the microbial community. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and DNA sequencing analyses were undertaken to classify the recovered microorganisms. Moderately halophilic taxa (e.g., Marinobacter, Idiomarina, Chromohalobacter, Thiobacillus, Hyphomonas, Seohaeicola) were recovered from all sampled boreholes, and those boreholes that had previously been sealed to equilibrate with the fracture water contained taxa consistent with sulfate reduction (e.g., Desulfotomaculum) and hydrogen-driven homoacetogenesis (e.g., Fuchsiella). In contrast to this “corked” borehole that has been isolated from the mine environment for approximately 7 years at the time of sampling, we sampled additional open boreholes. The waters flowing freely from these open boreholes differ from those of the long-sealed borehole. This work complements ongoing efforts to describe the microbial diversity in fracture waters at Kidd Creek in order to better understand the processes shaping life in the deep terrestrial subsurface. In particular, this work demonstrates that anaerobic bacteria and known halophilic taxa are present and viable in the fracture waters presently outflowing from existing boreholes. Major cations and anions found in the fracture waters at the 2.4 km level of the mine are also reported. 
    more » « less
  4. null (Ed.)