skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Warren, Dana_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The body size of aquatic vertebrates is declining across populations and ecosystems worldwide owing to warmer water temperature and changing streamflow. In freshwaters, the effects of stream network position and density‐dependent factors on body size are less understood. We used an extensive dataset spanning 41 stream sites over 7 years to evaluate how density‐dependent and density‐independent factors influence the size of two top predators in small watersheds, Coastal Cutthroat TroutOncorhynchus clarkii clarkiiand Coastal Giant SalamandersDicamptodon tenebrosus. We tested three hypotheses of body‐size variation for trout and salamanders, including intraspecific density dependence, interspecific density dependence, and resource availability, using empirical observations in hierarchical linear mixed models in a model‐selection framework. In our best‐supported models, the strongest predictors of size were conspecific negative density dependence, as expected, suggesting greater intraspecific interactions probably owing to conspecific individuals having similar requirements. We reveal a biogeographic pattern in which body size peaks in middle stream‐network positions and plateaus or declines at lower and upper locations, proposing that stream network position also plays a role in determining body size in small watersheds. Salamander density also has a quadratic effect on adult trout size, with salamanders having a greater overall effect on the body size of both species than trout, suggesting that salamanders might be more dominant than trout in some interactions. Collectively, we found that biotic interactions, mainly conspecific but also interspecific, and stream‐network position affect trout and salamander body sizes in small watersheds. 
    more » « less
  2. Abstract Humans affect ecosystems in many ways, and scientific field studies are no exception. If data collection disrupts environments or biota too much, it can lead to inaccurate conclusions in the study of interest or in subsequent studies. We evaluated whether stream electrofishing surveys could measurably disturb the benthic biofilms in two forested headwaters in western Oregon, USA. While the consequences of electrofishing to macroinvertebrates and fish have been assessed, to date no studies have quantified its influence on benthic biofilms. We observed declines in the standing stocks of accrued benthic chlorophyll a directly after electrofishing in both streams. After electrofishing, the standing biofilm stocks declined by an average of ~15% in Oak Creek, a small third-order stream in the Oregon Coast Range Mountains, and by an average of ~34% in a third-order section of Lookout Creek, which is located in the western Cascade Mountains of Oregon, USA. In returning to Oak Creek 2 weeks after electrofishing, the standing stocks had fully recovered to their prefishing levels. While the benthic biofilm standing stocks did decline in association with electrofishing, the effects were small when compared with those of disturbances from common flow events and when scaling to the whole stream system. In Oak Creek, the proportional biofilm standing stock decline from electrofishing activity was about 26% of what was observed following a moderate flow event (40% of bank-full discharge), and about 15% of the decline in biofilm standing stocks following a complete bank-full discharge event (140% of bank-full discharge). 
    more » « less