Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Particle dark matter could belong to a multiplet that includes an electrically charged state. WIMP dark matter (χ0) accompanied by a negatively charged excited state (χ−) with a small mass difference (e.g. < 20 MeV) can form a bound-state with a nucleus such as xenon. This bound-state formation is rare and the released energy is O(1−10) MeV depending on the nucleus, making large liquid scintillator detectors suitable for detection. We searched for bound-state formation events with xenon in two experimental phases of the KamLAND-Zen experiment, a xenon-doped liquid scintillator detector. No statistically significant events were observed. For a benchmark parameter set of WIMP mass mχ0=1 TeV and mass difference Δm=17 MeV, we set the most stringent upper limits on the recombination cross section times velocity 〈σv〉 and the decay-width of χ− to 9.2×10−30cm3/s and 8.7×10−14 GeV, respectively at 90% confidence level.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Confined-state physics and signs of fermionization of moiré excitons in WSe 2 /MoSe 2 heterobilayersAbstract We revisit and extend the standard bosonic interpretation of interlayer excitons (ILX) in the moiré potential of twisted heterostructures of transition-metal dichalcogenides. In our experiments, we probe a high quality MoSe 2 /WSe 2 van der Waals bilayer heterostructure via density-dependent photoluminescence spectroscopy and reveal strongly developed, unconventional spectral shifts of the emergent moiré exciton resonances. The observation of saturating blueshifts of successive exciton resonances allow us to explain their physics in terms of a model utilizing fermionic saturable absorbers. This approach is strongly inspired by established quantum-dot models, which underlines the close analogy of ILX trapped in pockets of the moiré potential, and quantum emitters with discrete eigenstates.more » « less
-
Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, room-temperature operation, site-specific engineering of emitter arrays, and tunability with external strain and electric fields. In this work, we demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators. Through the Purcell effect, high-purity hBN emitters exhibit a cavity-enhanced spectral coupling efficiency up to 46% at room temperature, which exceeds the theoretical limit for cavity-free waveguide-emitter coupling and previous demonstrations by nearly an order-of-magnitude. The devices are fabricated with a CMOS-compatible process and exhibit no degradation of the 2D material optical properties, robustness to thermal annealing, and 100 nm positioning accuracy of quantum emitters within single-mode waveguides, opening a path for scalable quantum photonic chips with on-demand single-photon sources.more » « less
-
Abstract Engineering non-linear hybrid light-matter states in tailored lattices is a central research strategy for the simulation of complex Hamiltonians. Excitons in atomically thin crystals are an ideal active medium for such purposes, since they couple strongly with light and bear the potential to harness giant non-linearities and interactions while presenting a simple sample-processing and room temperature operability. We demonstrate lattice polaritons, based on an open, high-quality optical cavity, with an imprinted photonic lattice strongly coupled to excitons in a WS 2 monolayer. We experimentally observe the emergence of the canonical band-structure of particles in a one-dimensional lattice at room temperature, and demonstrate frequency reconfigurability over a spectral window exceeding 85 meV, as well as the systematic variation of the nearest-neighbour coupling, reflected by a tunability in the bandwidth of the p-band polaritons by 7 meV. The technology presented in this work is a critical demonstration towards reconfigurable photonic emulators operated with non-linear photonic fluids, offering a simple experimental implementation and working at ambient conditions.more » « less