skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Waters, Cara M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT: At fixed aerosol acidity, we recently demonstrated that dimers in isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) can heterogeneously react with hydroxyl radical (·OH) at faster rates than monomers. Aerosol acidity influences this aging process by enhancing the formation of oligomers in freshly generated IEPOX-SOA. Therefore, we systematically examined the role of aerosol acidity on kinetics and products resulting from heterogeneous ·OH oxidation of freshly generated IEPOX-SOA. IEPOX reacted with inorganic sulfate aerosol of varying initial pH (0.5, 1.5, and 2.5) in a steady state smog chamber to yield a constant source of freshly generated IEPOX-SOA, which was aged in an oxidation flow reactor for 0−22 equiv days of atmospheric ·OH exposure. Molecular-level chemical analyses revealed that the most acidic sulfate aerosol (pH 0.5) formed the largest oligomeric mass fraction, causing the slowest IEPOX-SOA mass decay with aging. Reactive uptake coefficients of ·OH (γOH) were 0.24 ± 0.06, 0.40 ± 0.05, and 0.49 ± 0.20 for IEPOX-SOA generated at pH 0.5, 1.5, and 2.5, respectively. IEPOXSOA became more liquid-like for pH 1.5 and 2.5, while exhibiting an irregular pattern for pH 0.5 with aging. Using kinetic and physicochemical data derived for a single aerosol pH in atmospheric models could inaccurately predict the fate of the IEPOX-SOA. 
    more » « less
    Free, publicly-accessible full text available May 8, 2026