skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Watson, Alexander B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of numerically computing the quantum dynamics of an electron in twisted bilayer graphene. The challenge is that atomic-scale models of the dynamics are aperiodic for generic twist angles because of the incommensurability of the layers. The Bistritzer-- MacDonald PDE model, which is periodic with respect to the bilayer's moir\'e pattern, has recently been shown to rigorously describe these dynamics in a parameter regime. In this work, we first prove that the dynamics of the tight-binding model of incommensurate twisted bilayer graphene can be approximated by computations on finite domains. The main ingredient of this proof is a speed of propagation estimate proved using Combes--Thomas estimates. We then provide extensive numerical computations, which clarify the range of validity of the Bistritzer--MacDonald model. 
    more » « less
    Free, publicly-accessible full text available June 30, 2025
  2. We introduce a generalization of local density of states which is “windowed” with respect to position and energy, called the windowed local density of states (wLDOS). This definition generalizes the usual LDOS in the sense that the usual LDOS is recovered in the limit where the position window captures individual sites and the energy window is a delta distribution. We prove that the wLDOS is local in the sense that it can be computed up to arbitrarily small error using spatial truncations of the system Hamiltonian. Using this result we prove that the wLDOS is well-defined and computable for infinite systems satisfying some natural assumptions. We finally present numerical computations of the wLDOS at the edge and in the bulk of a “Fibonacci SSH model”, a one-dimensional non-periodic model with topological edge states. 
    more » « less
  3. In this expository article, we present a systematic formal derivation of the Kubo formula for the linear-response current due to a time-harmonic electric field applied to non-interacting, spinless charged particles in a finite volume in the quantum setting. We model dissipation in a transparent way by assuming a sequence of scattering events occurring at random-time intervals modeled by a Poisson distribution. By taking the large-volume limit, we derive special cases of the formula for free electrons, continuum and tight-binding periodic systems, and the nearest-neighbor tight-binding model of graphene. We present the analogous formalism with dissipation to derive the Drude conductivity of classical free particles. 
    more » « less
  4. Abstract We describe the low‐temperature optical conductivity as a function of frequency for a quantum‐mechanical system of electrons that hop along a polymer chain. To this end, we invoke the Su–Schrieffer–Heegertight‐bindingHamiltonian for noninteracting spinless electrons on a one‐dimensional (1D) lattice. Our goal is to show via asymptotics how the interband conductivity of this system behaves as the smallest energy bandgap tends to close. Our analytical approach includes: (i) the Kubo‐type formulation for the optical conductivity with a nonzero damping due to microscopic collisions, (ii) reduction of this formulation to a 1D momentum integral over the Brillouin zone, and (iii) evaluation of this integral in terms of elementary functions via the three‐dimensional Mellin transform with respect to key physical parameters and subsequent inversion in a region of the respective complex space. Our approach reveals an intimate connection of the behavior of the conductivity to particular singularities of its Mellin transform. The analytical results are found in good agreement with direct numerical computations. 
    more » « less
  5. null (Ed.)