skip to main content


Search for: All records

Creators/Authors contains: "Watts, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Arctic sea ice loss in response to a warming climate is assessed in 42 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Sea ice observations show a significant acceleration in the rate of decline commencing near the turn of the twenty-first century. It is our assertion that state-of-the-art climate models should qualitatively reflect this accelerated trend within the limitations of internal variability and observational uncertainty. Our analysis shows that individual CMIP6 simulations of sea ice depict a wide range of model spread on biases and anomaly trends both across models and among their ensemble members. While the CMIP6 multimodel mean captures the observed sea ice area (SIA) decline relatively well, an individual model’s ability to represent the acceleration in sea ice decline remains a challenge. Seventeen (40%) out of 42 CMIP6 models and 37 (13%) out of the total 286 ensemble members reasonably capture the observed trends and acceleration in SIA decline. In addition, a larger ensemble size appears to increase the odds for a model to include at least one ensemble member skillfully representing the accelerated SIA trends. Simulations of sea ice volume (SIV) show much larger spread and uncertainty than SIA; however, due to limited availability of sea ice thickness data, these are not as well constrained by observations. Finally, we find that models with more ocean heat transport simulate larger sea ice declines, which suggests an emergent constraint in CMIP6 ensembles. This relationship points to the need for better understanding and modeling of ice–ocean interactions, especially with respect to frazil ice growth.

     
    more » « less
  2. Abstract

    Arthropods play a dominant role in natural and human-modified terrestrial ecosystem dynamics. Spatially-explicit arthropod population time-series data are crucial for statistical or mathematical models of these dynamics and assessment of their veterinary, medical, agricultural, and ecological impacts. Such data have been collected world-wide for over a century, but remain scattered and largely inaccessible. In particular, with the ever-present and growing threat of arthropod pests and vectors of infectious diseases, there are numerous historical and ongoing surveillance efforts, but the data are not reported in consistent formats and typically lack sufficient metadata to make reuse and re-analysis possible. Here, we present the first-ever minimum information standard for arthropod abundance, Minimum Information for Reusable Arthropod Abundance Data (MIReAD). Developed with broad stakeholder collaboration, it balances sufficiency for reuse with the practicality of preparing the data for submission. It is designed to optimize data (re)usability from the “FAIR,” (Findable, Accessible, Interoperable, and Reusable) principles of public data archiving (PDA). This standard will facilitate data unification across research initiatives and communities dedicated to surveillance for detection and control of vector-borne diseases and pests.

     
    more » « less