skip to main content


Search for: All records

Creators/Authors contains: "Waudby-Smith, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 3, 2025
  2. Abstract

    We derive confidence intervals (CIs) and confidence sequences (CSs) for the classical problem of estimating a bounded mean. Our approach generalizes and improves on the celebrated Chernoff method, yielding the best closed-form empirical-Bernstein CSs and CIs (converging exactly to the oracle Bernstein width) as well as non-closed-form betting CSs and CIs. Our method combines new composite nonnegative (super)martingales with Ville's maximal inequality, with strong connections to testing by betting and the method of mixtures. We also show how these ideas can be extended to sampling without replacement. In all cases, our bounds are adaptive to the unknown variance, and empirically vastly outperform prior approaches, establishing a new state-of-the-art for four fundamental problems: CSs and CIs for bounded means, when sampling with and without replacement.

     
    more » « less
  3. Many practical tasks involve sampling sequentially without replacement (WoR) from a finite population of size $N$, in an attempt to estimate some parameter $\theta^\star$. Accurately quantifying uncertainty throughout this process is a nontrivial task, but is necessary because it often determines when we stop collecting samples and confidently report a result. We present a suite of tools for designing \textit{confidence sequences} (CS) for $\theta^\star$. A CS is a sequence of confidence sets $(C_n)_{n=1}^N$, that shrink in size, and all contain $\theta^\star$ simultaneously with high probability. We present a generic approach to constructing a frequentist CS using Bayesian tools, based on the fact that the ratio of a prior to the posterior at the ground truth is a martingale. We then present Hoeffding- and empirical-Bernstein-type time-uniform CSs and fixed-time confidence intervals for sampling WoR, which improve on previous bounds in the literature and explicitly quantify the benefit of WoR sampling. 
    more » « less