skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Waugh, Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Forecasts of tropical cyclone (TC) tornadoes are less skillful than their non‐TC counterparts at all lead times. The development of a convection‐allowing regional ensemble, known as the Warn‐on‐Forecast System (WoFS), may help improve short‐fused TC tornado forecasts. As a first step, this study investigates the fidelity of convective‐scale kinematic and thermodynamic environments to a preliminary set of soundings from WoFS forecasts for comparison with radiosondes for selected 2020 landfalling TCs. Our study shows reasonable agreement between TC convective‐scale kinematic environments in WoFS versus observed soundings at all forecast lead times. Nonetheless, WoFS is biased toward weaker than observed TC‐relative radial winds, and stronger than observed near‐surface tangential winds with weaker winds aloft, during the forecast. Analysis of storm‐relative helicity (SRH) shows that WoFS underestimates extreme observed values. Convective‐scale thermodynamic environments are well simulated for both temperature and dewpoint at all lead times. However, WoFS is biased moister with steeper lapse rates compared to observations during the forecast. Both CAPE and, to a lesser extent, 0–3‐km CAPE distributions are narrower in WoFS than in radiosondes, with an underestimation of higher CAPE values. Together, these results suggest that WoFS may have utility for forecasting convective‐scale environments in landfalling TCs with lead times of several hours. 
    more » « less
  2. Abstract The National Science Foundation–sponsored Lake-Effect Electrification (LEE) field campaign intensive observation periods occurred between November and early February 2022–23 across the eastern Lake Ontario region. Project LEE documented, for the first time, the total lightning and electrical charge structures of lake-effect storms and the associated storm environment using a lightning mapping array (LMA), a mobile dual-polarization X-band radar, and balloon-based soundings that measured vertical profiles of temperature, humidity, wind, electric field, and hydrometeor types. LEE also observed abundant wind turbine-initiated lightning, which is climatologically more likely during the winter. The frequent occurrence of intense lake-effect storms and the proximity of a wind farm with nearly 300 turbines each more than 100 m tall to the lee of Lake Ontario provided an ideal laboratory for this study. The field project involved many undergraduate (>20) and graduate students. Some foreseen and unforeseen challenges included clearing the LMA solar panels of snow and continuous operation in low-sunlight conditions, large sonde balloons prematurely popping due to extremely cold conditions, sonde line breaking, recovering probes in deep snow in heavily forested areas, vehicles getting stuck in the snowpack, and an abnormally dry season for parts of the LEE domain. In spite of these difficulties, a dataset was collected in multiple lake-effect snowstorms (11 observation periods) and one extratropical cyclone snowstorm that clarifies the electrical structure of these systems. A key finding was the existence of a near-surface substantial positive charge layer (1 nC m−3) near the shoreline during lake-effect thunderstorms. 
    more » « less
  3. Abstract Quasi-linear convective systems (QLCSs) are responsible for approximately a quarter of all tornado events in the U.S., but no field campaigns have focused specifically on collecting data to understand QLCS tornadogenesis. The Propagation, Evolution, and Rotation in Linear System (PERiLS) project was the first observational study of tornadoes associated with QLCSs ever undertaken. Participants were drawn from more than 10 universities, laboratories, and institutes, with over 100 students participating in field activities. The PERiLS field phases spanned two years, late winters and early springs of 2022 and 2023, to increase the probability of intercepting significant tornadic QLCS events in a range of large-scale and local environments. The field phases of PERiLS collected data in nine tornadic and nontornadic QLCSs with unprecedented detail and diversity of measurements. The design and execution of the PERiLS field phase and preliminary data and ongoing analyses are shown. 
    more » « less
  4. null (Ed.)
    Abstract Harsh winters and hazards such as blizzards are synonymous with the northern Great Plains of the United States. Studying these events is difficult; the juxtaposition of cold temperatures and high winds makes microphysical observations of both blowing and falling snow challenging. Historically, these observations have been provided by costly hydrometeor imagers that have been deployed for field campaigns or at select observation sites. This has slowed the development and validation of microphysics parameterizations and remote-sensing retrievals of various properties. If cheaper, more mobile instrumentation can be developed, this progress can be accelerated. Further, lowering price barriers can make deployment of instrumentation feasible for education and outreach purposes. The Blowing Snow Observations at the University of North Dakota: Education through Research (BLOWN-UNDER) Campaign took place during the winter of 2019-2020 to investigate strategies for obtaining microphysical measurements in the harsh North Dakota winter. Student led, the project blended education, outreach, and scientific objectives. While a variety of in-situ and remote-sensing instruments were deployed for the campaign, the most novel aspect of the project was the development and deployment of OSCRE, the Open Snowflake Camera for Research and Education. Images from this instrument were combined with winter weather educational modules to describe properties of snow to the public, K-12 students, and members of indigenous communities through a tribal outreach program. Along with an educational deployment of a Doppler on Wheels mobile radar, nearly 1000 individuals were reached during the project. 
    more » « less
  5. ABSTRACT Because unmanned aircraft systems (UAS) offer new perspectives on the atmosphere, their use in atmospheric science is expanding rapidly. In support of this growth, the International Society for Atmospheric Research Using Remotely-Piloted Aircraft (ISARRA) has been developed and has convened annual meetings and “flight weeks.” The 2018 flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation–A Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE), involved a 1-week deployment to Colorado’s San Luis Valley. Between 14 and 20 July 2018 over 100 students, scientists, engineers, pilots, and outreach coordinators conducted an intensive field operation using unmanned aircraft and ground-based assets to develop datasets, community, and capabilities. In addition to a coordinated “Community Day” which offered a chance for groups to share their aircraft and science with the San Luis Valley community, LAPSE-RATE participants conducted nearly 1,300 research flights totaling over 250 flight hours. The measurements collected have been used to advance capabilities (instrumentation, platforms, sampling techniques, and modeling tools), conduct a detailed system intercomparison study, develop new collaborations, and foster community support for the use of UAS in atmospheric science. 
    more » « less
  6. Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2.6 ∘ C and 0.22 ± 0.59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS. 
    more » « less
  7. Abstract A mobile Shared Mobile Atmospheric Research and Teaching (SMART) radar was deployed in Hurricane Harvey and coordinated with the Corpus Christi, TX, WSR‐88D radar to retrieve airflow during landfall. Aerodynamic surface roughness estimates and a logarithmic wind profile assumption were used to project the 500‐m radar‐derived maximum wind field to near the surface. The logarithmic wind assumption was justified using radiosonde soundings taken within the storm, while the radar wind estimates were validated against an array of StickNets. For the data examined here, the radar projections had root‐mean‐squared error of 3.9 m/s and a high bias of 2.3 m/s. Mesovorticies in Harvey's eyewall produced the strongest radar‐observed winds. Given the wind analysis, Harvey was, at most, a Category 3 hurricane (50–58 m/s sustained winds) at landfall. This study demonstrates the utility of integrated remote and in situ observations in deriving spatiotemporal maps of wind maxima during hurricane landfalls. 
    more » « less