skip to main content

Search for: All records

Creators/Authors contains: "Way, Z."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the first results from Citizen ASAS-SN, a citizen science project for the All-Sky Automated Survey for Supernovae (ASAS-SN) hosted on the Zooniverse platform. Citizen ASAS-SN utilizes the newer, deeper, higher cadence ASAS-SN g -band data and tasks volunteers to classify periodic variable star candidates based on their phased light curves. We started from 40,640 new variable candidates from an input list of ∼7.4 million stars with δ < −60° and the volunteers identified 10,420 new discoveries which they classified as 4234 pulsating variables, 3132 rotational variables, 2923 eclipsing binaries, and 131 variables flagged as Unknown. They classified known variable stars with an accuracy of 89% for pulsating variables, 81% for eclipsing binaries, and 49% for rotational variables. We examine user performance, agreement between users, and compare the citizen science classifications with our machine learning classifier updated for the g -band light curves. In general, user activity correlates with higher classification accuracy and higher user agreement. We used the user’s “Junk” classifications to develop an effective machine learning classifier to separate real from false variables, and there is a clear path for using this “Junk” training set to significantly improve our primary machine learning classifier. We also illustratemore »the value of Citizen ASAS-SN for identifying unusual variables with several examples.« less
    Free, publicly-accessible full text available February 1, 2023