skip to main content


Search for: All records

Creators/Authors contains: "Weaver, Carolyn A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for advancing understanding of past, current, and future range dynamics. Mangroves near poleward range limits are often shorter, wider, and more shrublike compared to their tropical counterparts that grow as tall forests in freeze-free, resource-rich environments. The northern range limits of mangroves in the southeastern USA are particularly dynamic and climate sensitive due to abundance of suitable coastal wetland habitat and the exposure of mangroves to winter temperature extremes that are much colder than comparable range limits on other continents. Thus, there is need for methodological refinements and improved spatiotemporal data regarding changes in mangrove structure and abundance near northern range limits in the southeastern USA. Advancing understanding of rapidly changing range limits is critical for foundation plant species such as mangroves, as it provides a basis for anticipating and preparing for the cascading effects of climate-induced species redistribution on ecosystems and the human communities that depend on their ecosystem services. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. The capacity of coastal wetlands to stabilize shorelines and reduce erosion is a critical ecosystem service, and it is uncertain how changes in dominant vegetation may affect coastal protection. As part of a long-term study (2012–present) comparing ecosystem functions of marsh and black mangrove vegetation, we have experimentally maintained marsh and black mangrove patches (3 m × 3 m) along a plot-level (24 m × 42 m) gradient of marsh and mangrove cover in coastal wetlands near Port Aransas, TX. In August 2017, this experiment was directly in the path of Hurricane Harvey, a category 4 storm. This extreme disturbance event provided an opportunity to quantify differences in resistance between mangrove and marsh vegetation and to assess which vegetation type provided better shoreline protection against storm-driven erosion. We compared changes in plant cover, shoreline erosion, and accreted soil depth to values measured prior to storm landfall. Relative mangrove cover decreased 25–40% after the storm, regardless of initial cover, largely due to damage on taller mangroves (> 2.5 m height) that were not fully inundated by storm surge and were therefore exposed to strong winds. Evidence of regrowth on damaged mangrove branches was apparent within 2 months of landfall. Hurricane-induced decreases in mangrove cover were partially ameliorated by the presence of neighboring mangroves, particularly closer to the shoreline. Marsh plants were generally resistant to hurricane effects. Shoreline erosion exceeded 5 m where mangroves were absent (100% marsh cover) but was relatively modest (< 0.5 m) in plots with mangroves present (11–100% mangrove cover). Storm-driven accreted soil depth was variable but more than 2× higher in marsh patches than in mangrove patches. In general, mangroves provided shoreline protection from erosion but were also more damaged by wind and surge, which may reduce their shoreline protection capacity over longer time scales. 
    more » « less
  3. Coastal ecosystems display consistent patterns of trade-offs between resistance and resilience to tropical cyclones. 
    more » « less
  4. Abstract

    Plant identity and cover in coastal wetlands is changing in worldwide, and many subtropical salt marshes dominated by low‐stature herbaceous species are becoming woody mangroves. Yet, how changes affect coastal soil biogeochemical processes and belowground biomass before and after storms is uncertain. We experimentally manipulated the percent mangrove cover (Avicennia germinans) in 3 × 3 m cells embedded in 10 plots (24 × 42 m) comprising a gradient of marsh (e.g.,Spartina alterniflora,Batis maritima) and mangrove cover in Texas, USA. Hurricane Harvey made direct landfall over our site on 25 August 2017, providing a unique opportunity to test how plant composition mitigates hurricane effects on surface sediment accretion, soil chemistry (carbon, C; nitrogen, N; phosphorus, P; and sulfur, S), and root biomass. Data were collected before (2013 and 2016), one‐month after (2017), and one‐year after (2018) Hurricane Harvey crossed the area, allowing us to measure stocks before and after the hurricane. The accretion depth was higher in fringe compared with interior cells of plots, more variable in cells dominated by marsh than mangrove, and declined with increasing plot‐scale mangrove cover. The concentrations of P and δ34S in storm‐driven accreted surface sediments, and the concentrations of N, P, S, and δ34S in underlying soils (0–30 cm), decreased post‐hurricane, whereas the C concentrations in both compartments were unchanged. Root biomass in both marsh and mangrove cells was reduced by 80% in 2017 compared with previous dates and remained reduced in 2018. Post‐hurricane loss of root biomass in plots correlated with enhanced nutrient limitation. Total sulfide accumulation as indicated by δ34S, increased nutrient limitation, and decreased root biomass of both marshes and mangroves after hurricanes may affect ecosystem function and increase vulnerability in coastal wetlands to subsequent disturbances. Understanding how changes in plant composition in coastal ecosystems affects responses to hurricane disturbances is needed to assess coastal vulnerability.

     
    more » « less